Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}=1+\dfrac{\sqrt{30}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}=1+\dfrac{\sqrt{6}\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=1+\dfrac{\sqrt{6}}{2\sqrt{2}}=1+\dfrac{\sqrt{3}}{2}=\dfrac{2+\sqrt{3}}{2}\)
d) \(\sqrt{\left(1-\sqrt{2016}\right)^2}.\sqrt{2017+2\sqrt{2016}}=\left|1-\sqrt{2016}\right|\sqrt{\left(\sqrt{2016}+1\right)^2}\)
\(=\left(\sqrt{2016}+1\right)\left(\sqrt{2016}-1\right)=2015\)
e) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=27+12\sqrt{5}+12\sqrt{5}=27+24\sqrt{5}\)
f) \(2\sqrt{5}\left(2-3\sqrt{5}\right)+\left(1-2\sqrt{5}\right)^2+6\sqrt{5}\)
\(=4\sqrt{5}-30+21-4\sqrt{5}+6\sqrt{5}=6\sqrt{5}-9\)
Bài 4:
a: Thay x=36 vào A, ta được:
\(A=\dfrac{6+3}{6-2}=\dfrac{9}{4}\)
b: Ta có: \(B=\dfrac{1}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{2}{x-4}\)
\(=\dfrac{\sqrt{x}-2+x+2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+3\sqrt{x}}{x-4}\)
==>\(\dfrac{3000x+18000}{x\left(x+6\right)}=\dfrac{2650x+5x\left(x+6\right)}{x\left(x+6\right)}\)
=>2650x+5x^2+30x=3000x+18000
=>x=100
Bài 8:
a: Ta có: \(E=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{x^2-1}\right)\)
\(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{x^2+2x+1}\)
b: Thay x=3 vào E, ta được:
\(E=\dfrac{4\cdot3}{\left(3+1\right)^2}=\dfrac{12}{4^2}=\dfrac{3}{4}\)
Thay x=-3 vào E, ta được:
\(E=\dfrac{4\cdot\left(-3\right)}{\left(-3+1\right)^2}=\dfrac{-12}{4}=-3\)
a) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\sqrt{5}+1}{\sqrt{5}-1}+\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}+1\right)^2+\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{12}{4}=3\)
b) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}=\dfrac{-\sqrt{2}\left(\sqrt{6}-4\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-\sqrt{2}}{\sqrt{3}}-\dfrac{1}{\sqrt{6}}=\dfrac{-3}{\sqrt{6}}=\dfrac{-\sqrt{3}}{\sqrt{2}}\)
c) \(\left(2+\sqrt{5}+\sqrt{3}\right)\left(2+\sqrt{5}-\sqrt{3}\right)=\left(2+\sqrt{5}\right)^2-3\)
\(=9+4\sqrt{5}-3=6+4\sqrt{5}\)
d) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\sqrt{\dfrac{\left(2+\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=2-\sqrt{3}+2+\sqrt{3}=4\)