Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2017}{1+2}+\frac{2017}{1+2+3}+\frac{2017}{1+2+3+4}+...+\frac{2017}{1+2+3+4+...+2016}\)
\(=2017\times\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}\right)\)
\(=2017\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1008.2017}\right)\)
\(=2017\times2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2016.2017}\right)\)
\(=4034\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right)\)
\(=4034\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=4034\times\left(\frac{1}{2}-\frac{1}{2017}\right)\)
\(=4034\times\frac{2015}{4034}\)
\(=2015\)
\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{5.6}\\ \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\\ \)
\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{6}\)
\(\frac{1}{2}+\frac{1}{2}-\frac{1}{6}\)
\(1-\frac{1}{6}\\ \frac{5}{6}\)
k nha bn
a) ( 1/2-1/3-1/6).(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0.(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0+3/4.x = 9/10
3/4.x = 9/10
x = 9/10: 3/4
x = 6/5
b) x + ( 3/1.3+3/3.5+...+3/13.15) = 11/5
x + 3/2. ( 1-1/3 + 1/3 - 1/5 + ...+ 1/13 - 1/15) = 11/5
x + 3/2. ( 1-1/15) = 11/5
x + 3/2.14/15 = 11/5
x + 7/5 = 11/5
x = 11/5 - 7/5
x = 4/5
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{x\times\left(x+1\right)}{2}}=\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{2}\)[\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{x\times\left(x+1\right)}{2}}\)]=\(\frac{1}{2}.\frac{2015}{2017}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{4034}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}=\frac{1}{2017}\)<=> x+1=2017<=>x=2016
Ta thấy: Số các số hạng của tổng A ( trừ số 19/1 ) là: ( 18 - 1 ) : 1 + 1 = 18 ( số hạng )
Khi đó:
\(A=\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{17}{3}+\frac{18}{2}+\frac{19}{1}\)
\(A=1+\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+\left(\frac{3}{17}+1\right)+...+\left(\frac{17}{3}+1\right)+\left(\frac{18}{2}+1\right)\)
\(A=\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{3}+\frac{20}{2}\)
\(A=20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)\)
Khi đó:
\(\frac{A}{B}=\frac{20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}=20\)
A = 3/1 + 3/1+2 + 3/1+2+3 + 3/1+2+3+4 + ...+3/1+2+..+100
A = 3/1 + 3/3 + 3/6 + 3/10 +..+3/5050
A = 2/2 .( 3/1 + 3/3 + 3/6 + 3/10 +...+ 3/5050)
A = 6/2 + 6/6 + 6/12 + 6/20 +..+6/10100)
A = 6 .(1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +.. +1/100.101)
A = 6. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+1/100 - 1/101)
A = 6 (1 - 1/101)
A = 6 . 100/101
A = 600/101
dễ
ta có từ 1 den 9 co 9 chữ số
10 den 99 co 180 chữ số
từ 100 đến 999 có 1800 chữ số
từ 1 đến 999 có : 1800 + 180 + 9 = 1989 chữ số
tất cả các số có 4 chữ số là : [2017 - 1989] * 4 =7 số
số thứ 7 là : 1000+7=1007
vay chu so 2017 la chu so 7
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}.\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)