Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1\frac{4}{5}+2\frac{5}{7}+3\frac{4}{5}+4\frac{5}{7}\)
\(=\left(1\frac{4}{5}+3\frac{4}{5}\right)+\left(2\frac{5}{7}+4\frac{5}{7}\right)\)
\(=\left(\frac{9}{5}+\frac{19}{5}\right)+\left(\frac{19}{7}+\frac{33}{7}\right)\)
\(=\frac{28}{5}+\frac{52}{7}=13\frac{1}{35}\)
= ( \(1\frac{4}{5}\)+ \(3\frac{4}{5}\)) + ( \(2\frac{5}{7}\)+ \(4\frac{5}{7}\))
= \(4\frac{4}{5}\) + \(6\frac{5}{7}\)
= \(\frac{24}{5}\) + \(\frac{47}{7}\)
= ...... ( tính nốt nhé )
\(A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{19.20}{2}}\)
=> \(A=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{20-3}{20.3}\)
=> \(\frac{A}{2}=\frac{17}{60}\)
=> \(A=\frac{17}{30}\)
VẬY \(A=\frac{17}{30}\)
Ta có :\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+19}\)
\(=\frac{1}{3\times4}\times2+\frac{1}{4\times5}\times2+...+\frac{1}{19\times20}\times2\)
\(=2\times\left(\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\right)=2\times\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{20}\right)=2\times\frac{17}{60}=\frac{17}{30}\)
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
Chúc bạn học tốt nha!^-^
Ta thấy: Số các số hạng của tổng A ( trừ số 19/1 ) là: ( 18 - 1 ) : 1 + 1 = 18 ( số hạng )
Khi đó:
\(A=\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{17}{3}+\frac{18}{2}+\frac{19}{1}\)
\(A=1+\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+\left(\frac{3}{17}+1\right)+...+\left(\frac{17}{3}+1\right)+\left(\frac{18}{2}+1\right)\)
\(A=\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{3}+\frac{20}{2}\)
\(A=20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)\)
Khi đó:
\(\frac{A}{B}=\frac{20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}=20\)
2+3/4=11/4 ; 2-3/5=7/5
5/7:6=5/42 ; 5+2/7=37/7
Bài 2: a) x-1/6=1/2+1/3
x-1/6=5/6
x=5/6+1/6
x=1
b) x+1/8=1/2-1/3
x+1/8=1/6
x=1/6-1/8
x=1/24
c) x:1/2=2/3.3/4
x:1/2=1/2
x=1/2.1/2
x =1/4