Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x^2-2xy-2x=y-20\)
\(\Leftrightarrow y+2xy=4x^2-2x+20\)
\(\Leftrightarrow y\cdot\left(2x+1\right)=4x^2-2x+20\)
\(\Leftrightarrow y=\dfrac{4x^2-2x+20}{2x+1}\)
\(\Leftrightarrow y=\dfrac{4x^2+2x-4x+20}{2x+1}\)
\(\Leftrightarrow y=\dfrac{2x\left(2x+1\right)-4x-2+22}{2x+1}\)
\(\Leftrightarrow y=2x+\dfrac{-2\left(2x+1\right)+22}{2x+1}\)
\(\Leftrightarrow y=2x-2+\dfrac{22}{2x+1}\)
Để x,y ∈ Z thì \(\dfrac{22}{2x+1}\) có giá trị nguyên
\(\Rightarrow2x+1\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
Mà nếu x nguyên thì \(2x+1\) luôn là số lẻ
\(\Rightarrow2x+1\in\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{0;-1;5;-6\right\}\)
Ta tìm được các số y tương ứng là:
\(x=0\Rightarrow y=20\)
\(x=-1\Rightarrow y=-26\)
\(x=5\Rightarrow y=10\)
\(x=-6\Rightarrow y=-16\)
Vậy các cặp x,y thỏa là: \(\left(0;20\right);\left(-1;-26\right);\left(5;10\right);\left(-6;-16\right)\)
bạn ben 10 sai rồi , phải như thế này chứ
ta có đề bài <=> \(\left(xy^2+2xy+x\right)-4y-4=-4\)
<=> \(x\left(y^2+2y+1\right)-4\left(y+1\right)=-4\)
<=> \(x\left(y+1\right)^2-4\left(y+1\right)=-4\)
<=> \(\left(y+1\right)\left(xy+x-4\right)=-4\)
mà x,y thuộc Z nên \(\left(y+1\right);\left(xy+x-4\right)\) thuộc ước của 4
cậu tự lập bảng và tự giải nhé
định đi ngủ nhưng thấy thương
^^
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)
ta có:\(y^2+2xy-7x-12=0\)
\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)*
Vế trái của * là số chính phương, vế phải là tích của 2 số liên tiếp nên phải có 1 số bằng 1
Do đó:\(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=4\end{cases}}}\)
Vậy phương trình có 2 nghiệm là (x;y)=(-3;3),(-4;4)
\(x^2+2y^2+2xy+y-2=0\)
\(\Rightarrow4x^2+8y^2+8xy+4y-8=0\)
\(\Rightarrow4x^2+8xy+4y^2+4y^2+4y+1=9\)
\(\Rightarrow\left(2x+2y\right)^2+\left(2y+1\right)^2=9\)
Vì \(2y+1\) lẻ nên \(\left(2y+1\right)^2\) lẻ mà \(\left(2y+1\right)^2\le9\)
Nên \(\left(2y+1\right)^2\in\left\{1,9\right\}\)
Với \(\left(2y+1\right)^2=1\) thì \(\left(2x+2y\right)^2=9-1=8\) mà 8 không phải số chính phương (loại)
Với \(\left(2y+1\right)^2=9\) thì \(\orbr{\begin{cases}2y+1=3\\2y+1=-3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2y=2\\2y=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
\(\Rightarrow\left(2x+2y\right)^2=9-9=0\Rightarrow2x+2y=0\)\(\Rightarrow x+y=0\Rightarrow x=-y\)
Nếu \(y=1\Rightarrow x=-1\)
Nếu \(y=-2\Rightarrow x=2\)
Vậy \(\left(x,y\right)\in\left\{\left(-1,1\right);\left(2;-2\right)\right\}\)
Một vế chẵn, một vế lẻ suy ra vô nghiệm