Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Đề đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó tọa độ hai điểm cực trị là A( 0 ; 4m2- 2) và B( 2m; 4m2- 4m3-2).
Do I( 1; 0) là trung điểm của AB nên
Chọn C.
Đáp án C
Ta có
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi Khi đó và B(2m;0).
Vậy giá trị của m là
+ Đạo hàm y’ = 3x2- 6mx= 3x( x- 2m)
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi :m≠0. (1)
+ Tọa độ các điểm cực trị của đồ thị hàm số là A( 0 ; 3m3) ; B( 2m; -m3)
Ta có: O A → ( 0 ; 3 m 3 ) ⇒ O A = 3 m 3 ( 2 )
Ta thấy A ∈ O y ⇒ O A ≡ O y ⇒ d ( B ; O A ) = d ( B ; O y ) = 2 m (3)
+ Từ (2) và (3) suy ra S= ½. OA.d(B ; OA)=3m4.
Do đó: S ∆ O A B = 48 ⇔ 3 m 4 = 48 ⇔ m = ± 2 (thỏa mãn (1) ).
Chọn D.
Chọn D
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi
2m ≠ 0 ⇔ m ≠ 0 (1)
Khi đó, các điểm cực trị của đồ thị hàm số là
Ta có: O A ⇀ ( 0 ; 3 m 3 ) ⇒ O A = 3 m 3 (2)
Ta thấy A ∈ O y ⇒ O A ≡ O y
⇒ d ( B , O A ) = d ( B , O y ) = 2 m ( 3 )
Từ (2) và (3) suy ra
S ∆ O A B = 1 2 . O A . d ( B , O A ) = 3 m 4
Do đó: S ∆ O A B = 48 ⇔ m = ± 2 (thỏa mãn (1)
Chọn D
Đồ thị hàm số có hai điểm cực trị khi và chỉ khi : 2m ≠ 0 ⇔ m ≠ 0 (1)
Khi đó, các điểm cực trị của đồ thị hàm số là
Ta có: đạo hàm y’ = m( 3x2-6x). Để hàm số đã cho có 2 điểm cực trị thì m≠ 0.
Với mọi m≠ 0 , ta có
Gọi tọa độ 2 điểm cực trị là A( 0 ; 3m-3) và B( 2 ; -m-3)
Ta có :
2 A B 2 - ( O A 2 + O B 2 ) = 20 ⇔ 11 m 2 + 6 m - 17 = 0 ⇔ m = 1
hoặc m = - 17 11
Vậy giá trị m cần tìm là:
Chọn C.
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
Chọn D
Ta có y ' = 3 x 2 - 6 m x + m - 1
Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0 có hai nghiệm phân biệt
Điều này tương đương
Hai điểm cực trị có hoành độ dương
Vậy các giá trị cần tìm của m là m >1
Ta có
Hàm số có hai điểm cực trị khi y’= 0 có hai nghiệm phân biệt suy ra
0≠2m hay m≠0
Tọa độ các điểm cực trị của đồ thị hàm số là: A( 0; 2) và B( 2m; 2-4m3).
Suy ra
Theo giả thiết A; Bvà M thẳng hàng
Chọn D.