Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát.
g/s : \(x\ge y\ge z\)\(\ge1\)
Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)
=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)
=> tồn tại số nguyên dương k sao cho: \(xy+yz+zx+1=k.xyz\)
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)
=> \(k\le1+1+1+1=4\)(1)
TH1: k = 4 khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 ( tm)
TH2: k=3
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)
=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)
=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)
=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1
Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)
Vậy x=2, y=z=1 ( thử vào thỏa mãn)
TH3: k=2
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)
=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)
=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1
Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)
Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)
Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)
TH4: K=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)
=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3
Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại
Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại
Với z =3 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)
TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)
Vậy: (x; y; z) là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng
Ps: Cầu một cách ngắn gọn hơn! Thanks
Xét với \(0< x,y,z< 1\) thì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}>1\) (vô lí)
Xét \(x,y,z\ge1\) , đặt \(\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\) (\(a,b,c\ge1\))
Ta có \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}\ge\frac{3}{abc+1}\) (cái này chắc you cm đc)
\(\Rightarrow abc\ge2\Rightarrow a^3.b^3.c^3\ge8\) hay \(xyz\ge8\) (1)
Áp dụng BĐT AM-GM : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}\Rightarrow x+y+z\ge6\) (2)
Áp dụng BĐT Cauchy : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{3}{\sqrt[3]{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge27\) (3)
Nhân (1), (2), (3) theo vế : \(xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge1296\)
Đẳng thức xảy ra khi xảy ra đồng thời (1), (2), (3) , tức là x = y = z = 2
Vậy tập nghiệm của hệ : \(\left(x,y,z\right)=\left(2;2;2\right)\)
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)
Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)
Khi đó a,b là 2 nghiệm của pt ẩn m:
\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)
Tới đây bn tự làm tiếp.
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!