K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Xét với \(0< x,y,z< 1\) thì \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}>1\) (vô lí)

Xét \(x,y,z\ge1\) , đặt \(\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\) (\(a,b,c\ge1\))

Ta có \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{1}{a^3+1}+\frac{1}{b^3+1}+\frac{1}{c^3+1}\ge\frac{3}{abc+1}\) (cái này chắc you cm đc)

\(\Rightarrow abc\ge2\Rightarrow a^3.b^3.c^3\ge8\) hay \(xyz\ge8\) (1)

Áp dụng BĐT AM-GM : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}\Rightarrow x+y+z\ge6\) (2)

Áp dụng BĐT Cauchy : \(1=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{3}{\sqrt[3]{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\) 

\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge27\) (3)

Nhân (1), (2), (3) theo vế : \(xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge1296\)

Đẳng thức xảy ra khi xảy ra đồng thời (1), (2), (3) , tức là x = y = z = 2

Vậy tập nghiệm của hệ : \(\left(x,y,z\right)=\left(2;2;2\right)\)

2 tháng 1 2017

you chứng minh \(xyz\ge8\) thử coi được không?