K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

4 tháng 1 2016

ok pạn Phạm thế mạnh

4 tháng 7 2016

Bài nè không bít có được vào CÂU HỎI HAY của OLM không?

1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.

19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)

  • Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)
  • Vậy n chẵn và có dạng n = 2k.

2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.

Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)

  • k = 0 => A = 20 không phải là số chính phương
  • k = 1 => A = 28 không phải là số chính phương
  • k = 2 => A = 100 là số chính phương 102
  • k >= 3 thì:

\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)

A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.

3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.

30 tháng 8 2021

Đặt \(a^2=n^2-n+2\left(a\in Z\right)\)

\(\Rightarrow4a^2=4n^2-4n+8\)

\(\Leftrightarrow4a^2=\left(2n-1\right)^2+9\)

\(\Leftrightarrow4a^2-\left(2n-1\right)^2=9\)

\(\Leftrightarrow\left(2a-2n+1\right)\left(2a+2n-1\right)=9\)

Phương trình ước số cơ bản.

21 tháng 3 2017

nhầm, đây toán lớp 6

15 tháng 5 2022

Vì \(n+8\) và \(n+1\) là 2 SCP

nên đặt \(\left\{{}\begin{matrix}n+8=x^2\\n+1=y^2\end{matrix}\right.\) ;\(a;b\in N\) (1)

Trừ từng vế ta được:

\(x^2-y^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=7\)

Vì \(x;y\in N\) nên \(x-y< x+y\)

\(\rightarrow\left\{{}\begin{matrix}x-y=1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Thế vào (1) ta được:\(\left\{{}\begin{matrix}n+8=4^2\\n+1=3^2\end{matrix}\right.\)

                                  \(\Leftrightarrow\left\{{}\begin{matrix}n=8\\n=8\end{matrix}\right.\)

Vậy \(n=8\) thì \(n+8;n+1\) là 2 SCP

 

8 tháng 3 2021

Đặt n + 24 = a2

n - 65 = b2

=> a- b= n + 24 - n + 65

=> (a - b)(a + b) = 1 . 89

Vì a - b < a + b

\(\Rightarrow\hept{\begin{cases}a-b=1\\a+b=89\end{cases}}\)  

\(\Rightarrow\hept{\begin{cases}a=45\\b=44\end{cases}}\)

=> n + 24 = 452

=> n = 2001

8 tháng 3 2021

Đặt \(n+24=a^2\)

       \(n-65=b^2\)

\(\Rightarrow a^2-b^2=\left(n+24\right)-\left(n-65\right)\)

\(\Rightarrow a^2-b^2=n+24-n+65\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=1.89\)

Vì \(a-b< a+b\)

\(\Rightarrow\hept{\begin{cases}a-b=1\\a+b=89\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=45\\b=44\end{cases}}\)

\(\Rightarrow n+24=45^2\)

\(\Rightarrow n=2001\)

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.