K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

4 tháng 1 2016

ok pạn Phạm thế mạnh

13 tháng 1 2018

phản chứng : tìm n để cái trên là số c/p => ..

4 tháng 7 2016

Bài nè không bít có được vào CÂU HỎI HAY của OLM không?

1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.

19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)

  • Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)
  • Vậy n chẵn và có dạng n = 2k.

2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.

Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)

  • k = 0 => A = 20 không phải là số chính phương
  • k = 1 => A = 28 không phải là số chính phương
  • k = 2 => A = 100 là số chính phương 102
  • k >= 3 thì:

\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)

A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.

3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.