Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
`5.25.2.41.8`
`= 5.50.41.8`
`= 5.400.41`
`= 2000.41`
`= 82000`
Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)
\(\Rightarrow n^2+4n+4+2009=p^2\)
\(\Rightarrow\left(n+2\right)^2+2009=p^2\)
\(\Rightarrow p^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)
mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)
Vậy \(n=1002\) thỏa đề bài
\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)
\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)
\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)
\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009
Ta có các TH
\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)
Giải các hệ trên tìm n
1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
2/
Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)
\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)
\(\Rightarrow m^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)
Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)
\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)
Vậy n = 1002