Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48