Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47
Gọi số cần tìm là \(\overline{ab}\), (\(0< a\le9;0\le b\le9;a,b\in N\)
Ta có: 2b=a+1 và \(\overline{ab}\)-\(\overline{ba}\)=27\(\Rightarrow10a-b-10b-a=27\\ 9\left(a-b\right)=27\\ a-b=3\\ a+1-b=4\\ 2b-b=4\\ b=4\)
a=2.4-1=7
vậy số cần tìm là 74
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(0< a< 10;0< b< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn 3 lần chữ số đơn vị là 2
=> PT : 2a - 3b = 2 (1)
Lại có khi viết ngược lại số mới nhỏ hơn số ban đầu 18 đơn vị
=> PT : \(\overline{ab}-\overline{ba}=18\)
<=> a - b = 2 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}2a-3b=2\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(b+2\right)-3b=2\\a=b+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\)
Vậy số cần tìm là 42
gọi chữ số hàng chục là a ( a thuộc tập hợp N*)
thì chữ số hàng đơn vị là 3a
ta được số ban đầu là 10a + 3a = 13a
số sau khi đổi chỗ là 10.3a + a = 31a
vì sau khi đỗi chỗ các chữ số thì số mới hơn số ban đầu 18 đơn vị nên ta có phương trình
13a + 18 = 31a
<=> 13a - 31a = -18
<=> -18a = -18
<=> a = 1 (thỏa mãn điều kiện )
=> 3a = 3
vạy ta được số 13
Gọi số tự nhiên cần tìm có dạng là \(\overrightarrow{ab}\left(ĐK:0< a< 10;0\le a< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn hàng đơn vị 2 đơn vị nên ta có phương trình: 2a-b=2(1)
Vì khi viết ngược số đó thì ta được số mới lớn hơn số cũ 18 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=18\)
\(\Leftrightarrow10b+a-10a-b=18\)
\(\Leftrightarrow-9a+9b=18\)
hay a-b=-2(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}2a-b=2\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=a+2=4+2=6\end{matrix}\right.\)
Vậy: Số cần tìm là 46
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
Gọi chữ số hàng chục và đvị lần lượt là x và y (0<x≤9; 0≤y≤9)
Vì chứ số hàng chục ít hơn hàng đơn vị là 2 nên ta có: y-x=2 (1)
Nếu viết thêm chữ số 1 vào giữa hai chữ số đã cho thì được số mới lớn hơn số cũ 460 đơn vị nên ta có:
100x+10+y-10x-y=460
⇔90x=450
⇔x=5
⇒y=7
Số đó là 57
Bài này không cần lập hệ bạn nhé.
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)