Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: \(\frac{a}{b}=\frac{36}{45}\)và ƯCLN (a, b) = 31
=> \(\frac{a}{b}=\frac{4}{5}\)
=> a = 31m; b = 31n (m, n \(\inℕ^∗\); m và n nguyên tố cùng nhau)
=> \(\frac{31m}{31n}=\frac{4}{5}\)
=> \(\frac{m}{n}=\frac{4}{5}\)
Vì m và n nguyên tố cùng nhau nên m = 4 và n = 5.
=> \(\frac{31m}{31n}=\frac{31.4}{31.5}=\frac{124}{155}\)
=> \(\frac{a}{b}=\frac{124}{155}\)
Vậy...
Ta có: a/b=36/45=4/5 Suy ra a=4k, b=5k
Suy ra BCNN(a;b)=BCNN(4k;5k)=22.5.k=20k
Mà BCNN(a;b)=300
Suy ra 20k=300
Suy ra k=300:20=15 Suy ra a=60,b=75
b) Ta có 21/35=3/5
ta có 3/5 là phân số tối giản bằng phân số a/b suy ra phân số a/b đã chia cho ƯCLN (a;b)=30 để được 1 phân số tối giản là 3/5
Suy ra a=3.30=90, b=5.30=160
c) Ta có BCNN(a;b).ƯCLN (a,b)=ab=3549
Ta có: a/b=15/35=3/7 suy ra a=3k, b=7k
Suy ra a.b=3k.7k=3549
Suy ra 21.k2=3549
Suy ra k2=169 Suy ra k=13
Phân số a và b phải bằng phân số 36 phần 45 và ước bằng 31
\(\Rightarrow\frac{a}{b}=\frac{36\cdot31}{45\cdot31}=\frac{1116}{1395}\)
Đáp số:\(\frac{1116}{1395}\)
\(\frac{a}{b}=\frac{36}{45}=\frac{4}{5}\)
(a,b) = 31 chứng tỏ phân số \(\frac{a}{b}\)rút gọn cho 31 được \(\frac{4}{5}\)
Vậy \(\frac{a}{b}=\frac{4.31}{5.31}=\frac{124}{155}\)
phân số\(\frac{a}{b}\)tối giản là \(\frac{4}{5}\)
vì ƯCLN (a;b) = 31\(\Rightarrow\)a;b \(\in\)B(31)={31;62;96;124;155;...}
mà 124=31.4; 155=31.5\(\Rightarrow\)\(\frac{a}{b}\)=\(\frac{124}{155}\)