Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(m=\left\{-2;-1;0\right\}\Rightarrow n=0\)
- Với \(m< -2\Rightarrow m\left(m+1\right)\left(m+2\right)< 0\) (ktm)
- Với \(m>0\):
\(m\left(m+1\right)\left(m+2\right)=\left(m+1\right)\left(m^2+2m\right)\)
Gọi \(d=ƯC\left(m+1;m^2+2m\right)\)
\(\Rightarrow\left(m+1\right)\left(m+1\right)-\left(m^2+2m\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Mà \(\left(m+1\right)\left(m^2+2m\right)=n^2\Rightarrow\left\{{}\begin{matrix}m+1=a^2\\m^2+2m=b^2\end{matrix}\right.\)
Từ \(m^2+2m=b^2\Rightarrow\left(m+1\right)^2-b^2=1\)
\(\Rightarrow\left(m+1-b\right)\left(m+1+b\right)=1\)
Tới đây chắc dễ rồi
Làm thử theo cách cổ truyền vậy -.-
Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)
\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)
\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)
Coi pt trên là pt bậc 2 ẩn n
Ta có : \(\Delta=4m^4+4m^2+32m-63\)
Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương
Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)
Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)
Khi đó \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)
Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)
Nên điều giả sử là sai .
Tức là\(m\le2\)
Mà \(m\inℕ^∗\)
\(\Rightarrow m\in\left\{1;2\right\}\)
*Với m = 1 thì pt ban đầu trở thành
\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)
\(\Leftrightarrow n^2+n+1=-5\)
\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)
Pt vô nghiệm
*Với m = 2 thì pt ban đầu trở thành
\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)
\(\Leftrightarrow n^2+n+1=21\)
\(\Leftrightarrow n^2+n-20=0\)
\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)
\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)
Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)
Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC , ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC
CMR: a,P ; I ; Q thẳng hàng
b, đường thẳng PQ đi qua trung điểm HK
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1\)
Pt có 2 nghiệm pb khi \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
Do \(x_1\) là nghiệm pt nên:
\(x_1^2-2\left(m+1\right)x_1+m^2+2=0\Rightarrow x_1^2=2\left(m+1\right)x_1-m^2-2\)
Từ đó ta có:
\(x_1^2+2\left(m+1\right)x_2=12m+2\)
\(\Leftrightarrow2\left(m+1\right)x_1-m^2-2+2\left(m+1\right)x_2=12m+2\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-12m-4=0\)
\(\Leftrightarrow4\left(m+1\right)^2-m^2-12m-4=0\)
\(\Leftrightarrow3m^2-4m=0\Rightarrow\left[{}\begin{matrix}m=0< \dfrac{1}{2}\left(loại\right)\\m=\dfrac{4}{3}\end{matrix}\right.\)
a)
Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)
\(=\left(-2m-4\right)^2-4\left(m-3\right)\)
\(=4m^2+16m+16\ge0\forall x\)
Suy ra: Phương trình \(x^2-2\left(m+2\right)x+m-3=0\) luôn có nghiệm với mọi m
Áp dụng hệ thức Viet, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)=2m+4\\x_1\cdot x_2=m-3\end{matrix}\right.\)
Ta có: \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)
\(\Leftrightarrow4\cdot x_1x_2+2\cdot\left(x_1+x_2\right)+1=8\)
\(\Leftrightarrow4\left(m-3\right)+2\left(2m+4\right)+1=8\)
\(\Leftrightarrow4m-12+4m+8+1=8\)
\(\Leftrightarrow8m=8+12-8-1\)
\(\Leftrightarrow8m=11\)
hay \(m=\dfrac{11}{8}\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b)
Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(\Rightarrow P=4m^2+11m+31=4m^2+2\cdot m\cdot\dfrac{11}{2}+\dfrac{121}{4}+\dfrac{3}{4}\) \(=\left(2m+\dfrac{11}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow2m+\dfrac{11}{2}=0\Leftrightarrow m=-\dfrac{11}{4}\)
Vậy \(P_{Min}=\dfrac{3}{4}\) khi \(m=-\dfrac{11}{4}\)