K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Làm thử theo cách cổ truyền vậy -.-

Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)

\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)

\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)

Coi pt trên là pt bậc 2 ẩn n

Ta có : \(\Delta=4m^4+4m^2+32m-63\)

Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương

Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)

Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)

Khi đó  \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)

Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)

Nên điều giả sử là sai .

Tức là\(m\le2\)

Mà \(m\inℕ^∗\)

\(\Rightarrow m\in\left\{1;2\right\}\)

*Với m = 1 thì pt ban đầu trở thành

\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)

\(\Leftrightarrow n^2+n+1=-5\)

\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)

Pt vô nghiệm

*Với m = 2 thì pt ban đầu trở thành

\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)

\(\Leftrightarrow n^2+n+1=21\)

\(\Leftrightarrow n^2+n-20=0\)

\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)

\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)

Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)

Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC ,  ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC

CMR: a,P ; I ; Q thẳng hàng

          b, đường thẳng PQ đi qua trung điểm HK 

NV
20 tháng 3 2022

- Với \(m=\left\{-2;-1;0\right\}\Rightarrow n=0\)

- Với \(m< -2\Rightarrow m\left(m+1\right)\left(m+2\right)< 0\) (ktm)

- Với \(m>0\):

\(m\left(m+1\right)\left(m+2\right)=\left(m+1\right)\left(m^2+2m\right)\)

Gọi \(d=ƯC\left(m+1;m^2+2m\right)\)

\(\Rightarrow\left(m+1\right)\left(m+1\right)-\left(m^2+2m\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Mà \(\left(m+1\right)\left(m^2+2m\right)=n^2\Rightarrow\left\{{}\begin{matrix}m+1=a^2\\m^2+2m=b^2\end{matrix}\right.\)

Từ \(m^2+2m=b^2\Rightarrow\left(m+1\right)^2-b^2=1\)

\(\Rightarrow\left(m+1-b\right)\left(m+1+b\right)=1\)

Tới đây chắc dễ rồi

NV
16 tháng 5 2020

Với \(x=y=1\) ko thỏa mãn

Nếu trong 2 số x;y có ít nhất 1 số lớn hơn 1

\(\Rightarrow\left\{{}\begin{matrix}xy+x+y>3\\x^2+y^2+1>3\end{matrix}\right.\) ta chỉ có 2 trường hợp sau:

TH1: \(\left\{{}\begin{matrix}xy+x+y=5\\x^2+y^2+1=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=5\\x^2+y^2=5\end{matrix}\right.\)

Dễ dàng giải hệ ra \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

Th2: \(\left\{{}\begin{matrix}xy+x+y=6\\x^2+y^2+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy+x+y=6\\x^2+y^2=4\end{matrix}\right.\) (vô nghiệm do ko có 2 số nguyên dương nào có tổng các bình phương bằng 4)