Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)
\(\Rightarrow2^n\cdot4,5=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
b) \(2^m-2^n=1984\)
\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)
\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)
\(\Rightarrow n=6\)
\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
c)\(7^{2n}+7^{2n+2}=2450\)
⇒\(7^{2n}+7^{2n}.7^2=2450\)
⇒\(7^{2n}.50=2450\)
⇒\(7^{2n}=49\)\(=7^2\)
⇒2n=2
⇒n=1
\(E=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-n\right|\)
\(\left\{{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|x-2\right|\ge x-2\\.................\\ \left|x-n\right|\ge x-n\end{matrix}\right.\)
Cộng vào ta có:
\(E\ge x-1+x-2+....+x-n\)
\(E\ge nx-\left(1+2+....+n\right)\)
Dấu "=" xảy ra khi:
\(x>0\)
\(M\left(x\right)+N\left(x\right)\)
\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)
\(=2x^4+5x^3-3x^2+2x-3\)
\(M\left(x\right)-N\left(x\right)\)
\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)
\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)
\(=-2x^4+5x^3+x^2-2x-5\)
\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)
\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)
\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)
\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)
- Với \(y=0\)
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=1680=5.6.7.8\)
\(\Rightarrow2^x+1=5\Rightarrow2^x=4\Rightarrow x=2\)
- Với \(y>0\Rightarrow15^y=5^y.3^y⋮5\)
Do \(2^x\ne0\) \(\forall x\), nhân cả 2 vế với \(2^x\) ta được:
\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-15^y.2^x=1679.2^x\)
Ta có \(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích của 5 số tự nhiên liên tiếp
\(\Rightarrow2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\) \(\forall x\)
\(15^y⋮5\Rightarrow15^y.2^x⋮y\)
\(\Rightarrow VT\) chia hết cho 5
Mà \(2^x\) không chia hết cho 5; \(1679\) không chia hết cho 5
\(\Rightarrow VP\) không chia hết cho 5
\(\Rightarrow\) không tồn tại x, y thỏa mãn
Vậy pt đã cho có nghiệm duy nhất \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
a)
\(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)
b)
\(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)