K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
23 tháng 4 2019

N = 4x^2 - 4x + 1 - 3/2x - 1/ + 2

=> N = ( 2x - 1 )^2 - 3/2x - 1/ + 2

=> N >= 2 với mọi x

N = 2 <=> ( 2x - 1 )^2 = 0

và 3/ 2x - 1/ = 0

<=> x = 1/2

Vậy min N = 2 <=> x = 1/2.

12 tháng 1 2020

sai rồi bạn

23 tháng 11 2021

\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)

Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

12 tháng 4 2021

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3

19 tháng 7 2018

1)Ta có A =x- 4x + 1

             = x2 - 2.2.x + 22 - 3

             = ( x - 2 )-3

  Với x \(\inℝ\), ( x - 2 )\(\ge\)

  \(\Rightarrow\)(x - 2 )- 3 \(\ge\)-3

Vậy GTNN của A là -3

2) Ta có B = 4x+ 4x + 11

                   = ( 2x )+ 2.2x.1 + 12 +10

                  = ( 2x + 1 )+10

*tương tự câu 1*

3) *tương tự câu 2*

4) Ta có P = ( 2x + 1 )2 + ( x + 2)

                   = [ ( 2x )+ 2.2x.1 + 12  ] + [ x+ 2.x.2 + 22 ]

                    = 4x2 + 4x +1 + x2 + 4x + 4 

                    = 5x2 + 8x + 5

       Với x\(\inℝ\), 5x2 \(\ge\)0

             mà GTNN của 8x + 5 là 5

\(\Rightarrow\) GTNN của 5x2 + 8x + 5  là 5

  Vậy GTNN của  ( 2x + 1 )2 + ( x + 2) là 5

12 tháng 12 2018

1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7 
 Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật

12 tháng 12 2018

2.ĐK: \(x\ne-1\)

 \(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)

Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)

Vậy GTNN của Q là 1 khi x = 1

1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)

Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy GTLN của B là 7 khi x = 2

11 tháng 7 2023

\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)

\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)

\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)

\(M=343-8x^3-64+8x^3\)

\(M=279\)

Vậy M có giá trị 279 với mọi x

\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)

\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)

\(P=16x^3-8x^2+4x-2\)

Thay \(x=10\) vào P ta có:

\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)

Vậy P có giá trị 15238 tại x=10

a: M=343-8x^3-64+8x^3=279

b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3

=16x^3-8x^2+4x-2

=16*10^3-8*10^2+4*10-2=15238