K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|

= |x + y - 1|

= |2 - 1|

= 1

Vậy giá trị nhỏ nhất của A là 1

22 tháng 10 2023

\(A=\left|x+1\right|+\left|y-2\right|\)

\(\Rightarrow A\le x+1+y-2\)

\(A\le x+y-1\)

\(A\le4\)

Vậy giá trị nhỏ nhất biểu thức A là 4.

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

26 tháng 6 2016

\(A=\left|x-1\right|+\left|x-2\right|\)

  • x<1: \(A=1-x+2-x=3-2x>3-2\cdot1=1\)(1)
  • 1<= x < 2: \(A=x-1+2-x=1\)(2)
  • x>=2: \(A=x-1+x-2=2x-3\ge2\cdot2-3=1\). Dấu "=" khi x = 2. (3)

Từ (1); (2); (3) => GTNN của A bằng 1 khi \(1\le x\le2\)

26 tháng 6 2016

Ta có Ix-1I \(\ge\) 0  và Ix-2I \(\ge\) 0

=> A= Ix-1I + Ix-2I \(\ge\) 0

=> Giá trị nhỏ nhất của A=0 khi x-1=0 => x=1

19 tháng 9 2017

a ) Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|+\left|c\right|+\left|d\right|\ge\left|a+b+c+d\right|\)ta có : 

 \(A=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)

\(A=\left|3-x\right|+\left|4-x\right|+\left|x-5\right|\ge\left|\left(3-x\right)+\left(4-x\right)+\left(x-5\right)\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi : \(\hept{\begin{cases}x-5\le0\\x-4=0\\x-3\ge0\end{cases}\Rightarrow x=4}\)

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

27 tháng 9 2021

\(B=\left|x-2\right|+\left|x-2010\right|\)

\(\Leftrightarrow B=\left|2-x\right|+\left|x-2010\right|\ge\left|2-x+x-2010\right|=\left|-2008\right|=2008\)

Dấu bằng xảy ra \(\Leftrightarrow\left(2-x\right)\left(x-2010\right)\ge0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-2010\right)\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2010\right)\le0\)

<=> x - 2 và x - 2010 trái dấu

Nhận thấy x - 2 > x - 2010

=> x-2> 0 => x > 2 ( 1 )

+> x - 2010 < 0 => x < 2010 ( 2)

Từ ( 1 ) và ( 2 ) \(\Rightarrow2< x< 2010\)

Vậy ...........

Mình không biết là bạn ở dưới làm đúng hay không nhưng qtrong là bạn nên làm có chất lượng 1 chút chứ không pk bạn lên copy 1 lời  giải nào đó xong dán vô . Làm ơn có trách nghiệm 1 chút

A=|x+2010|.|x+2012|.|x+2014|

 =|x+2010|.|x+2012|.|x+2014|≥0

⇒Ann=0

khi:|x+2010|.|x+2012|.|x+2014|=0

⇒x+2010=0 hoặc x+2012=0 hoặc x+2014 =0

⇒x=-2010 hoặc x=-2012 hoặc x= -2014

vậy x=-2010 hoặc x=-2012 hoặc x=-2014