Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chỉ có giá trị lớn nhất khi |x+1|=0
\(\Rightarrow\)x = -1
ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4
Vậy giá trị lớn nhất của A là 4
mày đặt câu hỏi đã đời xong mày lại trả lời thì hỏi làm gì chứ
+)Với \(x\le2016\)
=>\(A=\left|x-2016\right|+x-1=2016-x+x-1=2015\)
+)Với x>2016
=>\(A=\left|x-2016\right|+x-1=x-2016+x-1=2x-2017>2015\)
So sánh 2 trường hợp ta thấy A đạt giá trị nhỏ nhất là 2015 khi \(x\le2016\)
Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)
Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)
Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)
Ta co:/x-2018/-/x-2017/ be hon hoac bang /x-2018-x+2017/=1
dau bang xay ra khi va chi khi:x-2018>=0 va x-2017 >=0
hoac x-2018<=0 va x-2017 <=0
suy ra:x>=2018 va x>=2017
hoac x<=2018 va x<=2017
suy ra:x>=2018 hoac x<=2017
Vay A dat GTLN = 1 khi va chi khi x>=2018 hoac x<=2017
Thực ra mình cũng làm như bạn nhưng sau khi thử thì lại thấy có vấn đề. Nếu bạn thử x=2018 thì
A=\(|2018-2018|\)-\(|2018-2017|\)
A=0-1
A=-1
Vậy khi đó x không thể bằng 2018