K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a, A = (3x(x+1))/(x+1)^2 = (3x)/(x+1)`

Thay `x = -4` ta có: `(3.(-4))/(-4+1) = 4`.

`b, B = (b(a-b))/((a-b)(a+b)) = b/(a+b)`

Thay `a = 4; b =-2`

`-2/(4-2) = -1`

22 tháng 7 2023

a) \(\dfrac{x^2-2x+1}{x+2}=\dfrac{\left(x-1\right)^2}{x+2}\)

Khi x=-3 ta có:

\(\dfrac{\left(-3-1\right)^2}{-3+2}=\dfrac{\left(-4\right)^2}{-1}=-4\)

Khi x=1 ta có:
\(\dfrac{\left(1-1\right)^2}{1+2}=0\)

b) \(\dfrac{xy+3y^2}{x+y}=\dfrac{y\left(x+3y\right)}{x+y}\)

Khi x=3 y=-1 ta có:

\(\dfrac{-1\cdot\left(3+3\cdot-1\right)}{3\cdot-1}=0\)

Bài 3:

\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

NV
26 tháng 12 2022

ĐKXĐ: \(x\ne-3\)

Tại \(x=2\Rightarrow A=\dfrac{2^2+3}{3.2+9}=\dfrac{7}{15}\)

VT
26 tháng 12 2022

a) A xác định khi \(3x+9\ne0\Leftrightarrow x\ne-3\).

b) Với \(x=2\) thì \(A=\dfrac{2^2+3}{3\cdot2+9}=\dfrac{7}{15}\).

23 tháng 9 2023

\(\dfrac{3-3x}{x^2-9}\cdot\dfrac{x-3}{x-1}\\ =\dfrac{3\left(1-x\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-1\right)}\\ =\dfrac{-3\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-1\right)}\\ =-\dfrac{3}{x+3}\\ \dfrac{6x+4}{x^2-4}\cdot\dfrac{x^2-2x}{3x+2}\\ =\dfrac{2\left(3x+2\right)x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}\\ =\dfrac{2x}{x+2}\)

19 tháng 11 2021

\(a,ĐK:x\ne0;x\ne1;x\ne\pm2\\ b,A=\left[\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(x+2\right)}\right]\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(x+2\right)}\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{4x\left(x+1\right)\cdot x}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x^2}{x+2}\)

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

1) tính nhanh giá trị biểu thức:a) x^2 + 4y^2 - 4xy tại x=18; y=4b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100 2) tìm x biết : a) 7x^2 -28 =0                    b) 2/3x (x^2 - 4) = 0                               c) 2x (3x - 5) - (5 - 3x) = 0                                                           d) (2x - 1)^2 -25 = 0 3) phân tích các đa thức sau thành nhân tử :a) 2(x - 3) - y (x - 3)        b) x^3 + 3x^2 - 3x - 1        c) x^2 + 5xy         d) x^2 - x - y^2...
Đọc tiếp

1) tính nhanh giá trị biểu thức:

a) x^2 + 4y^2 - 4xy tại x=18; y=4

b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100

 

2) tìm x biết : 

a) 7x^2 -28 =0                    b) 2/3x (x^2 - 4) = 0                               c) 2x (3x - 5) - (5 - 3x) = 0

                                                           d) (2x - 1)^2 -25 = 0

 

3) phân tích các đa thức sau thành nhân tử :

a) 2(x - 3) - y (x - 3)        b) x^3 + 3x^2 - 3x - 1        c) x^2 + 5xy         d) x^2 - x - y^2 -y

e) x^2 - 9y^2 +2x +1        f) x^2 - 2x - 4y^2 - 4y       g) 10x +15y          h) x^2 - 2xy + y^2 - 4

i) 4x - 4y + x^2 - 2xy + y^2               k) x^4 - 4x^3 - 8x^2 - 8x                  l) x^3 + x^2 - 4x - 4

n) x^3 + x^2y - xy^2 - y^3                o) x^2 - y^2 - 2x - 2y                        p) x^2 - y^2 - 2x + 2y

q) 2x + 2y - x^2 - xy                         r) x^2 - 25 + y^2 + 2xy                     s) x^3 - 2x^2 + x

t) 12x^2y - 18xy^2 - 30y^2                u) 36 - 12x + x^2                              v) 3x^2 - 3xy

1

Bài 2: 

a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$