K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

a) \(\dfrac{x^2-2x+1}{x+2}=\dfrac{\left(x-1\right)^2}{x+2}\)

Khi x=-3 ta có:

\(\dfrac{\left(-3-1\right)^2}{-3+2}=\dfrac{\left(-4\right)^2}{-1}=-4\)

Khi x=1 ta có:
\(\dfrac{\left(1-1\right)^2}{1+2}=0\)

b) \(\dfrac{xy+3y^2}{x+y}=\dfrac{y\left(x+3y\right)}{x+y}\)

Khi x=3 y=-1 ta có:

\(\dfrac{-1\cdot\left(3+3\cdot-1\right)}{3\cdot-1}=0\)

`a, A = (3x(x+1))/(x+1)^2 = (3x)/(x+1)`

Thay `x = -4` ta có: `(3.(-4))/(-4+1) = 4`.

`b, B = (b(a-b))/((a-b)(a+b)) = b/(a+b)`

Thay `a = 4; b =-2`

`-2/(4-2) = -1`

Bài 3:

\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

Bài 2: 

a: \(x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b: \(x^8+36x^4=0\)

\(\Leftrightarrow x^4=0\)

hay x=0

2 tháng 10 2021

a(b+3)-b(3+b)

=(3+b)(a-b)

Thay số, có: (3+1997).(2003-1997)

= 2000.6 =12000

xy(x+y)-2x-2y

xy(x+y)- 2(x+y)

(x+y).(xy-2)

Thay số, co: 7. (8-2)

7.4=28

a: A=x^2y(2/3+3+1)=14/3*x^2y

=14/3*3^2*(-1/7)

=-2*3=-6

a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)

\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)

\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)

\(=x-1\)

b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)

\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-1}{y}\)

 

29 tháng 10 2023

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(=x^3-y^3+2y^3=x^3+y^3\)

Khi x=2/3 và y=1/3 thì \(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

29 tháng 10 2023

Ta có:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\) 

Thay x = \(\dfrac{2}{3}\) và \(y=\dfrac{1}{3}\) vào A ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

Bài 3: 

a: Ta có: C=A+B

\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)

\(=2x^2-y+xy-x^2y^2\)

b: Ta có: C+A=B

\(\Leftrightarrow C=B-A\)

\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)

\(=-x^2y^2+3y-xy-2\)

15 tháng 12 2021

\(A=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{2\left(x-2\right)}{x+2}\\ A=\dfrac{2\left(\dfrac{1}{2}-2\right)}{\dfrac{1}{2}+2}=\dfrac{2\left(-\dfrac{3}{2}\right)}{\dfrac{5}{2}}=\left(-3\right)\cdot\dfrac{2}{5}=-\dfrac{6}{5}\)

\(B=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{x}{x+y}=\dfrac{-5}{-5+10}=\dfrac{-5}{5}=-1\)