Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= 1+ 3+ 3^2+ 3^3+...+ 3^48+ 3^49
3S= 3.(1+3+ 3^2+ 3^3+...+ 3^49)
3S= 3+ 3^2+ 3^3+ 3^4+....+3^50
3S-S= (3+ 3^2+ 3^3+ 3^4+...+3^50)-(1+3+ 3^2+ 3^3+...+3^49)
2S= 3+3^2+ 3^3+ 3^4+...+3^50- 1-3- 3^2- 3^3-...-3^49
2S=(3-3)+ (3^2- 3^2)+ ...+(3^49-3^49)+ 3^50-1
2S= 3^50-1
S= (3^50-1):2
S=1+3+32+33+...+348+349
=> 3S=3+32+33+34+....+349+350
=> 2S=350-1
=> \(S=\frac{3^{50}-1}{2}\)
Ta có: 31 = ...3
32 = ..9
33 = ..7
34 = ...1
35 = ...3
Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.
Mà 20 : 4 = 5 ( không dư)
=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.
Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.
Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.
S = 1 + 3 + 32 + 33 +...+ 320
3S= 3.(1+3+32+33+....320)
3S= 3+32+33+...+320+ 321
3S-S=321-1
2S=321-1
S=321- 1 / 2
321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi
ta có: A = 31+32+33+...+32006
=> 3A = 32+33+34+...+32007
3A-A = 32007-3
2A = 32007 - 3
mà 32007 = 32004.33 = (34)501.27 = 81501.27 =( ....1).27 => 32007 có chữ số tận cùng là 7
=> 32007-3 có chữ số tận cùng là: 7-3 = 4
=> 2A = 32007 - 3 có chữ số tận cùng là 4
\(\Rightarrow A=\frac{3^{2007}-3}{2}\) có chữ số tận cùng là 2 hoặc 7
mà A = 31+32+33+...+32006 chia hết cho 2
=> A có chữ số tận cùng là 2
Ta có: Số số hạng là : (1002-12):10 +1 = 100 ;
Tổng của H là : (1002+12)*100/2 = 50700
Xong ròi :))