Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)
S=3/2^0+3/2^1+....+3/2^2018
S=3/2.(2/2^0+2/2^1+....+2^2018)
đặt B=2/2^0+2/2^1+....+2^2018
2B=2.(2/2^0+2/2^1+....+2^2018)
2B=1+2/2^0+...+2/2^2017
2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)
B=1-2^2018
S=3/2.1-2^2018=3/2^2018
xem lại đề đi mk nghĩ là 121 đấy
cả cái tổng đó phải chia hết cho 121
S= 1+ 3+ 3^2+ 3^3+...+ 3^48+ 3^49
3S= 3.(1+3+ 3^2+ 3^3+...+ 3^49)
3S= 3+ 3^2+ 3^3+ 3^4+....+3^50
3S-S= (3+ 3^2+ 3^3+ 3^4+...+3^50)-(1+3+ 3^2+ 3^3+...+3^49)
2S= 3+3^2+ 3^3+ 3^4+...+3^50- 1-3- 3^2- 3^3-...-3^49
2S=(3-3)+ (3^2- 3^2)+ ...+(3^49-3^49)+ 3^50-1
2S= 3^50-1
S= (3^50-1):2
S=1+3+32+33+...+348+349
=> 3S=3+32+33+34+....+349+350
=> 2S=350-1
=> \(S=\frac{3^{50}-1}{2}\)