Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y là các số tự nhiên lớn hơn 1 thoả mãn x^2020 = y^2021. Tìm x biết y là số tự nhiên nhỏ nhất.
Số tự nhiên nhỏ nhất là 0
thay y vào bt
x.2020=0.2021
x.2020=0
x=0:2020
x=0
Vì x là số tự nhiên lớn hơn 1 nên x=1(vô lí)
Vậy x thuộc rỗng
2.
\(\frac{2}{2x+1}=\frac{y}{4}\)
\(\Rightarrow y.\left(2x+1\right)=2.4=8\)
\(\Rightarrow y;2x+1\inƯ\left(8\right)\)
Mà 2x + 1 là số lẻ \(\Rightarrow2x+1\in\left\{-1;1\right\}\)
Ta có bảng:
2x+1 | -1 | 1 |
y | -8 | 8 |
x | -1 | 0 |
Bài 1:
Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.
$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$
Để $x,y,z$ là stn thì $t\vdots 20,25,30$
$\Rightarrow t=BC(20,25,30)$
Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0
$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$
$\Rightarrow t=300$
$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$
Bài 2:
$2n+1\vdots n-1$
$\Rightarrow 2(n-1)+3\vdots n-1$
$\Rightarrow 3\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$
$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$