K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

21 tháng 11 2015

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n

31 tháng 3 2022

(2x+1)(x-5)=12

2x2-9x-17=0

delta=217

x1= \(\frac{-\left(-9\right)-\sqrt{217}}{2\cdot2}=\frac{9-\sqrt{217}}{4}\)   x2=\(\frac{-\left(-9\right)+\sqrt{217}}{2\cdot2}=\frac{9+\sqrt{217}}{4}\)

P/s: ko có y hả b?

4 tháng 11

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5

2. 

\(\frac{2}{2x+1}=\frac{y}{4}\)

\(\Rightarrow y.\left(2x+1\right)=2.4=8\)

\(\Rightarrow y;2x+1\inƯ\left(8\right)\)

Mà 2x + 1 là số lẻ \(\Rightarrow2x+1\in\left\{-1;1\right\}\)

Ta có bảng:

2x+1-11
y-88
x-1
8 tháng 12 2018

Gọi \(ƯC\left(2x-y;x+y+1\right)=d\left(d\in N\right)\)

\(\Rightarrow2x-y⋮d,x+y+1⋮d\)

\(\Rightarrow\left(2x-y\right)\left(x+y+1\right)⋮d^2\Rightarrow x^2⋮d^2\Rightarrow x⋮d\) (1)

Mặt khác, \(2x-y+x+y+1⋮d\Rightarrow3x+1⋮d\) (2)

Từ (1) và (2) ta được: \(3x+1-3x⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy 2x - y và x + y + 1 là 2 số nguyên tố cùng nhau.

Mà \(\left(2x-y\right)\left(x+y+1\right)\) là số chính phương

Nên 2x - y và x + y + 1 là 2 số chính phương.