Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(P\in Z\) thì \(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
mà \(3\left(n-1\right)⋮\left(n-1\right)\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy n \(\in\left\{2;0;6;-4\right\}\)
\(P=\dfrac{3n+2}{n-1}=\dfrac{3n-3+5}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)
\(\Rightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\left(tm\right)\)
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
tìm các số nguyên n sao cho biểu thức sau là số nguyên:
P=\(\frac{2n-1}{n-1}\)
giúp mk nha các bạn..<3
Để P là số nguyên
=> 2n-1 Chia hết cho n-1
2n-2+1 Chia hết cho n-1
2(n-1) +1 Chia hết cho n-1
Có 2(n-1) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 \(\in\)Ư(1)
Lập bảng rồi bạn tự tính nhé
Trùng tên. Mk thấy tên Ngọc Nhi ít người có lắm mak. Mk cũng tên lak Ngọc Nhi
Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để P \(\in\)Z <=> 1 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(1) = {1; -1}
Với n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = -1 + 1 = 0
Vậy ...
ta có:
(x+3).(x+4)>0
<=>x^2 + 7x + 12 > 0.
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4
x2= - 3
hệ số a = 1 >0
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3.
Có thể xảy ra hai trường hợp:
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1)
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2)
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4
Câu 1:
Để A nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
Có 3n - 3 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}
Câu 2:
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)=2^{18}.7\)
\(=2^{16}.2^2.7\)
\(=2^{16}.14\)chia hết cho 14
=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)
\(M=\frac{3n-1}{n-1}\inℤ\)
\(\Rightarrow3n-1⋮n-1\)
\(\Rightarrow3n-3+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+2⋮n-1\)
\(3\left(n-1\right)⋮n-1\)
\(\Rightarrow2⋮n-1\)
...
\(M=\frac{3n-1}{n-1}\)có giá trị là số nguyên\(\Rightarrow3\left(n-1\right)+2⋮n-1\Rightarrow2⋮n-1\Rightarrow n-1\inƯ\left(2\right)=\left(-1;1;-2;2\right)\\
\)
Ta có bảng
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Thử lại ta có \(n\in\left(0;2;-1;3\right)\)thì M nhận giá trị nguyên
Ta có : \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để P là một số nguyên
=> \(5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng sau
Vậy để P là số nguyên thì \(n\in\left(2;6;0;-4\right)\)