Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a - 6 là ước số của 5a - 49
=> 5a - 49 chia hết cho a - 6
Mà 5a - 30 chia hết cho a - 6
=> 19 chia hết cho a - 6
=> a - 6 = { -19 ; -1 ; 1 ; 19 }
=> a = { -13 ; 5 ; 7 ; 25 }
bạn ấn vào đúng 0 sẽ ra kết quả mình giải rồi dễ lắm
2a - 5 là bội của a - 6
=> 2a - 5 \(⋮\)a - 6
=> 2a - 12 + 7 \(⋮\) a - 6
=> 2(a - 6) + 7 \(⋮\)a - 6
Vì 2(a - 6) \(⋮\) a - 6
=> 7 \(⋮\)a - 6
=> a - 6 \(\inƯ\left(7\right)\)
\(\Rightarrow a-6\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow a\in\left\{7;13;5;-1\right\}\)
2a - 5 là bội của a - 6
=> 2a - 5 chia hết cho a - 6
=> 2(a - 6) + 7 chia hết cho a - 6
=> 7 chia hết cho a - 6
=> a - 6 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }
a-6 | -7 | -1 | 1 | 7 |
a | -1 | 5 | 7 | 13 |
c+7 là ước của 4c+40
=>4c+40 chia hết cho c+7
=>4c+28+12 chia hết cho c+7
=>4(c+7)+12 chia hết cho c+7
=>12 chia hết cho c+7
=>c+7 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>c thuộc {-6;-8;-5;-9;-4;-10;-3;-11;-1;-13;5;-19}
Ta đặt A\(=\dfrac{4c-4+8}{c-1}\) \(\Rightarrow A=\dfrac{4c-4+8}{c-1}=\dfrac{4\left(c-1\right)+8}{c-1}=4+\dfrac{8}{c-1}\)
Để A∈Z \(\Leftrightarrow\) \(4+\dfrac{8}{c-1}\in Z\) \(\Rightarrow\dfrac{8}{c-1}\in Z\) \(\Rightarrow8⋮\left(c-1\right)\) \(\Rightarrow c-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\) \(\Rightarrow c\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
c + 3 là ước số của -6
⇒ -6 ⋮ (c + 3)
⇔ (c + 3) ∈ Ư(-6).
Ta có: Ư(-6) = { 1; -1; 2; -2; 3; -3; 6; -6 }
Vậy: (c + 3) ∈ { 1; -1; 2; -2; 3; -3; 6; -6 }
⇔ c ∈ { -2; -4; -1; -5; 0; -6; 3; -9 }
Ta có: c - 8 là ước số của 8c - 57
=> 8c - 57 chia hết c - 8
<=> (8c - 48) - 9 chia hết c - 8
<=> 8.(c - 6) - 9 chia hết c - 8
=> 9 chia hết c - 8
=> c - 8 \(\in\)Ư(9) = {-1;1;-3;3;-9;9}
=> c = {7;9;5;13;-1;17}
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 \(\in\) Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 $\in$∈ Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
2a + 1 chia hết cho a - 7
2a + 1 = 2a - 14 + 15
= 2 (a - 7) + 15
Vì 2 (a - 7) chia hết cho a - 7 => 15 chia hết cho a - 7
a - 7 ∈ Ư(15) = {1;3;5;15}
a ∈ {8;10;12;22}