K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2020

ABCMabNI

a)Xét \(\Delta\)AMB và \(\Delta\)AMC

AB=AC(GT)

MB=MC(GT)

AM là cạnh chung

=>\(\Delta\)AMB=\(\Delta\)AMC

b)Ta có:\(\Delta\)AMB=\(\Delta\)AMC=>góc AMC=góc AMB=\(^{90^0}\)

=>AM\(\perp\)BC

Ta lại có:góc aAM=\(90^0\);góc AMB=\(90^0\)mà hai góc này nằm ở vị trí so le trong

=>a//BC

c)Xét \(\Delta\)AMC và \(\Delta\)CNA

AC là cạnh chung

a//BC=>góc MCA=góc NAC(hai góc so le trong)

b//AM=>góc MAC=góc ACN(hai góc so le trong)

=>​​​\(\Delta\)​AMC=​\(\Delta\)​CNA

d)Xét​\(\Delta\)​INC và\(\Delta\)IMA

góc NIC=góc AIM(đối đỉnh)

IC=IA(GT)

góc ACN=góc MAC(câu c)

=>\(\Delta\)INC=​\(\Delta\)​IMA

=>IN=IM

=>I là trung điểm của MN

Hk tốt ^-^

21 tháng 3 2020

a và b) Xét ΔAMBΔAMB và ΔAMCΔAMC có:

AMAM: chung

MB=MC(gt)MB=MC(gt)

AB=AC(gt)AB=AC(gt)

Vậy ΔAMB=ΔAMC(c.c.c)ΔAMB=ΔAMC(c.c.c)

⇒AMBˆ=AMCˆ⇒AMB^=AMC^

Mà AMBˆ+AMCˆ=180oAMB^+AMC^=180o

Nên AMBˆ=AMCˆ=AMB^=AMC^=180o2=90o180o2=90o

⇒AM⊥BC⇒AM⊥BC

Ta có a//BCa//BC vì cùng vuông góc với AMAM

c) Xét tứ giác ANCMANCM có:

Aˆ=Mˆ=90oCˆ=AMCˆ=90o(b//AM)A^=M^=90oC^=AMC^=90o(b//AM)

Nên ANCMANCM là hình chữ nhật ⇒{AM=NCAN=MC⇒{AM=NCAN=MC

Xét ΔAMCΔAMC và ΔCNAΔCNA có: ⎧⎩⎨⎪⎪AM=NCAMCˆ=ANCˆ=90oAN=MC{AM=NCAMC^=ANC^=90oAN=MC

Nên ΔAMCΔAMC==ΔCNAΔCNA(c.g.c)(c.g.c)

d) II là trung điểm ACAC ⇒I⇒I là giao 2 đường chéo của hình chữ nhật

⇒I⇒I là trung điểm MN

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

5 tháng 2 2017

xét tam giác amb và tam giác amc có

AB=AC(GT)

BM=MC(GT)

AM CHUNG(GT)

=> TAM GIÁC AMB = TAM GIÁC AMC (CCC)

AI K MK MK K LAI 3 K

22 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

13 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có; ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC

Do đó: ΔABI=ΔACI

=>IB=IC

d: Ta có: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,M,I thẳng hàng

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau