K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

13 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có; ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC

Do đó: ΔABI=ΔACI

=>IB=IC

d: Ta có: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,M,I thẳng hàng

*Tự vẽ hình 

a) Xét tam giác ABM và ACM, có :

AB=AC(GT)

AM-cạnh chung

BM=MC(GT)

-> Tam giác ABM=ACM(c.c.c)

b) Do tam giác ABM=ACM (cmt)

-> \(\widehat{AMB}=\widehat{AMC}=90^o\)

-> AM vuông góc BC

c) Xét tam giác AEI và MBI, có :

\(\widehat{EAI}=\widehat{BMI}=90^o\)

\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)

AI=IM(GT)

-> tam giác AEI=MBI(g.c.g)

-> AE=BM ( đccm)

d) Chịu. Tự làm nhe -_-'

#Hoctot

11 tháng 1 2021

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

10 tháng 11 2016

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

30 tháng 12 2018

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

9 tháng 12 2022

A)Xét tam giác AMB và tam giác ABC có

BM=MC (gt)

AB=AC (gt)

AM là cạnh chung

Vậy tam giác AMB =tam giác MAC(c.c.c)

Vì tam giác AMB = tam giác AMC 

Suy ra góc AMB=góc AMC

TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)

Suy ra góc AMB= góc AMC=90 độ

Suy ra Am vuông góc với BC

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau