K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Em tham khảo tại link dưới đây:

Câu hỏi của Sao lại z - Toán lớp 7 - Học toán với OnlineMath

Câub) Chứng minh thêm:

Ta thấy A, H, C cố định nên K cố định (Là giao điểm của đường thẳng vuông góc với AC tại C và AH)

Vậy đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thuộc BC.

5 tháng 8 2017

Cảm ơn bạn nhiều

8 tháng 1 2018

Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo lời giải tại link trên nhé.

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

a: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có

BD=CE

góc DBM=góc ECN(=góc ACB)

Do đó; ΔMDB=ΔNEC

=>MD=NE

Xét tứ giác MDNE có

MD//NE

MD=NE

Do đó: MDNE là hình bình hành

=>MN cắt ED tại trung điểm của mỗi đường

=>I là trung điểm chung của MN và ED

b:

Kẻ AH vuông góc BC tại H

ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

Gọi O là giao của AH với đường vuông góc với MN tại I

=>O nằm trên trung trực của BC

=>OB=OC

Xét ΔOMN có

OI vừa là đường cao, vừa là trung tuyến

=>ΔOMN cân tại O

=>OM=ON

Xét ΔOAB và ΔOAC có

OA chung

AB=AC

OB=OC

Do đó: ΔOAB=ΔOAC

=>góc OBA=góc OCA

Xét ΔOBM và ΔOCN có

OB=OC

BM=CN

OM=ON

Do đó: ΔOBM=ΔOCN

=>góc OBM=góc OCN

=>góc OCN=góc OCA=180/2=90 độ

=>OC vuông góc AC

=>O cố định

a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E co

MB=NC

góc MBD=góc NCE
=>ΔMBD=ΔNCE

=>MD=NE

b: Xet tứ giác MDNE có

MD//NE

MD=NE

=>MDNE là hình bình hành

=>MN cắt DE tại trung điểm của mỗi đường

=>I là trung điểm của DE