Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9^27=3^81 > 81^13 =3^52
5^14 =25^7 < 27^7
10^30>9^30=3^90 > 2^100 (chú ý 3^3>2^4)
2^300=8^100 < 3^200=9^100
8^5=2^15=2^6.2^9 < 2^6.3^6 (chú ý 2^3<3^2)
3^450=(3^3)^150=27^150 > 5^300=(5^2)^150=25^150
a/ \(9^{27}=\left(3^2\right)^{27}=3^{54}\) và \(81^{13}=\left(3^4\right)^{13}=3^{52}\Rightarrow3^{54}>3^{52}\Rightarrow9^{27}>81^{13}\)
b/ \(5^{14}=\left(5^2\right)^7=25^7< 27^7\)
d/ \(2^{300}=\left(2^3\right)^{100}=8^{100}\) và \(3^{200}=\left(3^2\right)^{100}=9^{100}\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
f/ \(3^{450}=\left(3^3\right)^{150}=27^{150}\) và \(5^{300}=\left(5^2\right)^{150}=25^{150}\Rightarrow27^{150}>25^{150}\Rightarrow3^{450}>5^{300}\)
c/ \(10^{30}=\left(10^3\right)^{10}=1000^{10}\) và \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\Rightarrow1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp
b, Đề phải là A = 2009.2011
Có :A = 2009.(2010+1) = 2009.2010+2009
= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1
Vì 2010^2-1 < 2010^2 = B => A < B
c, A = (3^3)^150 = 27^150
B = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => A > B
k mk nha
a/
\(9^5=\left(3^2\right)^5=3^{10}>3^9=\left(3^3\right)^3=27^3\)
b/ \(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
c/
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}>2.2^{14}=2^{15}=\left(2^3\right)^5=8^5\)
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
1: 243^5=(3^5)^5=3^25
3*27^8=3*(3^3)^8=3^25
=>243^5=3*27^8
6: 125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
=>125^5>25^7(15>14)
5: 78^12-78^11=78^11(78-1)=78^11*77
78^11-78^10=78^10*77
mà 11>10
nên 78^12-78^11>78^11-78^10
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
a) 2300=(23)100=8100
3200=(32)100=9100
Vì 8100<9100 nên 2300<3200
b)3334=(3 . 111)4=34 . 1114=1113 . 34.111
4443=(111 . 4)3=1113.43
Xét 34.111=8991
43=64
Vì 64<8911 nên 3334>4443
c)23n=(23)n=8n
32n=(32)n=9n
Vì 8n<9n nên 23n<32n
d)3300=(32)150=9150
2450=(23)150=8150
Vì 8150<9150 nên 3300>2450
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu