K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

3111<3211=(25)11=255

=>3111<255

1714>1614=(24)14=256

1714>256

vì 255<256 nên

3111<255<256<1714

vậy 3111<1714

12 tháng 2 2016

 

So sanh:

3111 va 1714

7 tháng 8 2023

Ta có: 31^11 < 32^11 và 17^14 > 16^14
=> 32^11=(2^5)^11=2^55
=>16^14= (2^4)^14=2^56
Ta thấy : 55^56
=>2^55 < 2^56
=> 32^11 < 16^14
Tức : 31^11 < 17^14
Chúc bạn học tốt!

7 tháng 8 2023

\(32^{11}=\left(2^5\right)^{11}=2^{55}\\ 16^{14}=\left(2^4\right)^{14}=2^{56}\\ Ta.có:2^{55}< 2^{56}\Rightarrow32^{11}< 16^{14}\\ Mà:31^{11}< 32^{11};16^{14}< 17^{14}\Rightarrow31^{11}< 17^{14}\)

6 tháng 3 2017

a,<

b,>

c,>

d,<

6 tháng 3 2017

a     <

b        >

c      >

d      <

25 tháng 11 2015

gọi d=2a+1 và 6a+4

suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d

suy ra : (6a+4)-(2a+1) chia hết cho d

suy ra (6a+4)-3(2a+1) chia hết cho d

suy ra 1 chia hết cho d suy ra d=1

vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau

đúng rồi đấy nhớ tick cho mình nhé!

 

22 tháng 11 2019

+ Nếu n chia hết cho 3 thì tích chia hết cho 3

+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3

+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3

=> tích chia hết cho 3 với mọi n

9 tháng 8 2016

55 mũ 66 < 66 mũ 55

17 tháng 8 2016

5566 >  6655

mk gthik chắc bn k hiểu nên tốt nhất mk k gthik hihi

1 tháng 1 2017

\(\left(2^{10}.13+2^{10}.65\right):2^8.104\)

\(=\left[2^{10}.\left(13+65\right)\right]:2^8.104\)

\(=\left(2^{10}.78\right):2^8.104\)

\(=2^2.78.104\)

\(=32448\)

2 tháng 7 2018

\(=32448nha\)

7 tháng 10 2018

a)1714>1614=256>3211=222>3111

b)102330<102430=2300<2305=3261<3361

c)8217>8117=368>363=2721>2621

7 tháng 10 2018

d)339<342=921<1121

18 tháng 10 2021

a) <
b) <
c) >
d) =

18 tháng 10 2021

cảm nơn bạn nhe.

4 tháng 4 2018

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A< 1-\frac{1}{10}=\frac{9}{10}\)

\(=>A>\frac{65}{132}\)