K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A< 1-\frac{1}{10}=\frac{9}{10}\)

\(=>A>\frac{65}{132}\)

13 tháng 5 2018

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

              \(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)  

            \(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)  

            \(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

             \(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)

 Vậy   \(A< \frac{1}{2}\).

    

               

10 tháng 5 2018

\(\frac{x-12}{3}=\frac{x+1}{4}\)

=>(x-12).4=(x+1)*3

    4x-48=3x+3

    4x-3x=48+3

    x=51

10 tháng 5 2018

(x-12)/3=(x+1)/4

(x-12)*4=(x+1)*3

x*4-12*4=x*3+1*3

4x-48=3x+3

4x-3x=3+48

x=51

Ta có: A=1/11+1/12+1/13+...+1/30

            =(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)

\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)

\(\Rightarrow\)A<(1/10)*10+(1/20)*10

\(\Rightarrow\)A<1+1/2

\(\Rightarrow\)A<3/2<11/6

2 tháng 4 2018

cam on ban rat nhieu

7 tháng 4 2018

=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101

=>2a=1/2(2/1x3+2/3x5+...+2/99x101)

từ đây tự làm

1 tháng 5 2018

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(\Rightarrow4A=\frac{100}{101}\)

\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)

19 tháng 2 2018

mình nhầm câu b:

Áp dụng....

A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)

 =10^10+1/10^11+1=B

Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)

19 tháng 2 2018

a) Với a<b=>a+n/b+n >a/b

    Với a>b=>a+n/b+n<a/b

    Với a=b=>a+n/b+n=a/b

b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:

A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]

    =(10^10)+1/(10^11)+1=B

Vậy A=B

6 tháng 4 2018

A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1

B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3

Vì ... bạn tự làm nha.nhớ k đấy

6 tháng 4 2018

A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)

B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì 2010-1 > 2010-3

=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

=> A < B

Vậy A < B

11 tháng 5 2018

Đặt   \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt    \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)

\(2B=3-\frac{1}{3^{99}}\)

\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

Thay B vào 4A ta có:

\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)

\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)

Vì \(\frac{3}{8}>\frac{3}{16}\)

\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)

Vậy \(A< \frac{3}{16}\)

28 tháng 4 2017

< 1 nhé 

28 tháng 4 2017

Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\)\(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\)\(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)

Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)

=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)

=> A < 1