Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt k, ta có:
x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z
thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:
(2k)2+(3k)2+(5k)2=152
=>4xk2+9xk2+25xk2=152
=>k2x38=152
=>k2=4=>k=2 hoặc k=-2
Với k=2
=>x=4;y=6;z=10
Với k=-2
=>x=-4;y=-6;z=-10
Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)
b)Áp dụng dãy tỉ số bằng nhau, ta có :
x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2
=>x=8;y=14;z=18
Vậy........
N=\(\frac{-7}{10^{2005}}+\frac{-15}{10^{2005}}\) Và M=\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta xét 2 PS \(\frac{-7}{10^{2005}}\) và \(\frac{-7}{10^{2006}}\)
Ta có tích . (-7).102006<(-7).102005 (vì 102006>102005)
Nên \(\frac{-7}{10^{2005}}\) < \(\frac{-7}{10^{2006}}\)
Nên \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2005}}\) < \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
mà \(\sqrt{99}< \sqrt{100}=10\)
=> a > b
\(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
So sánh: \(2^{24}\)và\(3^{16}\)
\(2^{24}\)=\(\left(2^3\right)^8\)=\(8^8\)
\(3^{16}\)=\(\left(3^2\right)^8\)=\(9^8\)
Vì \(8^8\)<\(9^8\) => \(2^{24}\)<\(3^{16}\)
T.I.C.K mk nhé bn!!
\(\left\{{}\begin{matrix}2^{24}=\left(2^3\right)^8=8^8\\3^{16}=\left(3^2\right)^8=9^8\end{matrix}\right.\)
\(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
vì 31>17 và 11>4 nên Suyra 31^11 và 17^4 nhớ tk nha mk đg bị âm điểm hihi
\(\frac{x^2+xy+y^2}{x^2-xy}\)
x - 2y = 0 <=> x = 2y
Thế vào ta được :
\(\frac{x^2+xy+y^2}{x^2-xy}=\frac{\left(2y\right)^2+2y\cdot y+y^2}{\left(2y\right)^2-2y\cdot y}=\frac{4y^2+2y^2+y^2}{4y^2-2y^2}=\frac{7y^2}{2y^2}=\frac{7}{2}\)
Vậy giá trị của biểu thức = 7/2 khi x - 2y = 0
Đề bài toán: So sánh 2600 và 3400
Bài giải:
Ta có: 2600 = 26.100 = (26)100 = 64100
3400 = 34.100 = (34)100 = 81100
Vì 64100 < 81100 nên 2600 < 3400
Chúc bạn học tốt.
2600=8200;3400=9200
ma 8200<9200
=>2600<3400