K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

Đề bài toán: So sánh 2600 và 3400

Bài giải:

Ta có: 2600 = 26.100 = (26)100 = 64100

          3400 = 34.100 = (34)100 = 81100

Vì 64100 < 81100 nên 2600 < 3400

Chúc bạn học tốt.

11 tháng 11 2018

2600=8200;3400=9200

ma 8200<9200

=>2600<3400

11 tháng 11 2018

a)Đặt k, ta có:

x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z

thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:

(2k)2+(3k)2+(5k)2=152

=>4xk2+9xk2+25xk2=152

=>k2x38=152

=>k2=4=>k=2 hoặc k=-2

Với k=2

=>x=4;y=6;z=10

Với k=-2

=>x=-4;y=-6;z=-10

Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)

b)Áp dụng dãy tỉ số bằng nhau, ta có :

x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2

=>x=8;y=14;z=18

Vậy........

12 tháng 1 2019

N=\(\frac{-7}{10^{2005}}+\frac{-15}{10^{2005}}\)                                                     Và                                              M=\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)

Ta xét 2 PS \(\frac{-7}{10^{2005}}\) và  \(\frac{-7}{10^{2006}}\)

Ta có tích . (-7).102006<(-7).102005           (vì 102006>102005)

Nên  \(\frac{-7}{10^{2005}}\)   <   \(\frac{-7}{10^{2006}}\)

Nên  \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2005}}\)         <           \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)

4 tháng 3 2018

Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\) 

=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

mà \(\sqrt{99}< \sqrt{100}=10\) 

=> a > b

14 tháng 12 2021

giúp mình với cầu xin

 

14 tháng 12 2021

\(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)

18 tháng 9 2018

x2 + 2x = 0

=> x(x + 2) = 0

=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

18 tháng 9 2018

(x - 2) + 3.x2 - 6x = 0

=> (x - 2) + 3x2 - 3x . 2 = 0

=> (x - 2) + 3x.(x - 2) = 0

=> (1 + 3x)(x - 2) = 0

=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)

12 tháng 8 2017

So sánh: \(2^{24}\)\(3^{16}\)
\(2^{24}\)=\(\left(2^3\right)^8\)=\(8^8\)
\(3^{16}\)=\(\left(3^2\right)^8\)=\(9^8\)
\(8^8\)<\(9^8\) => \(2^{24}\)<\(3^{16}\)
T.I.C.K mk nhé bn!!

12 tháng 8 2017

\(\left\{{}\begin{matrix}2^{24}=\left(2^3\right)^8=8^8\\3^{16}=\left(3^2\right)^8=9^8\end{matrix}\right.\)

\(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

15 tháng 9 2023

a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)

b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)

c) \(27^{40}=3^{3^{40}}=3^{120}\)

\(64^{60}=8^{2^{60}}=8^{120}\)

Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)

con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

25 tháng 7 2017

vì 31>17 và 11>4 nên Suyra 31^11 và 17^4 nhớ tk nha mk đg bị âm điểm hihi

22 tháng 10 2017

Vì 31 > 17 ; 11 > 4 suy ra 3111 > 1714

31 tháng 8 2020

\(\frac{x^2+xy+y^2}{x^2-xy}\)

x - 2y = 0 <=> x = 2y

Thế vào ta được :

\(\frac{x^2+xy+y^2}{x^2-xy}=\frac{\left(2y\right)^2+2y\cdot y+y^2}{\left(2y\right)^2-2y\cdot y}=\frac{4y^2+2y^2+y^2}{4y^2-2y^2}=\frac{7y^2}{2y^2}=\frac{7}{2}\)

Vậy giá trị của biểu thức = 7/2 khi x - 2y = 0 

1 tháng 9 2020

thank u