Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(6 = \sqrt {36} ; - 1,7 = - \sqrt {2,89} \)
Vì 0 < 2,89 < 3 nên 0> \( - \sqrt {2,89} > - \sqrt 3 \) hay 0 > -1,7 > \( - \sqrt 3 \)
Vì 0 < 35 < 36 < 47 nên \(0 < \sqrt {35} < \sqrt {36} < \sqrt {47} \) hay 0 < \(\sqrt {35} < 6 < \sqrt {47} \)
Vậy các số theo thứ tự tăng dần là: \( - \sqrt 3 ; - 1,7;0;\sqrt {35} ;6;\sqrt {47} \)
b) Ta có:
\(\sqrt {5\frac{1}{6}} = \sqrt {5,1(6)} ; - \sqrt {2\frac{1}{3}} = - \sqrt {2,(3)} \); -1,5 = \( - \sqrt {2,25} \)
Vì 0 < 2,25 < 2,3 < 2,(3) nên 0> \( - \sqrt {2,25} > - \sqrt {2,3} > - \sqrt {2,(3)} \) hay 0 > -1,5 > \( - \sqrt {2,3} > - \sqrt {2\frac{1}{3}} \)
Vì 5,3 > 5,1(6) > 0 nên \(\sqrt {5,3} > \sqrt {5,1(6)} \)> 0 hay \(\sqrt {5,3} > \sqrt {5\frac{1}{6}} > 0\)
Vậy các số theo thứ tự giảm dần là: \(\sqrt {5,3} ;\sqrt {5\frac{1}{6}} ;0\); -1,5; \( - \sqrt {2,3} ; - \sqrt {2\frac{1}{3}} \)
a) Ta có:
\(\begin{array}{l}\frac{{ - 3}}{7} = \frac{{ - 6}}{{14}} ; \frac{{ - 1}}{2}=\frac{{ - 7}}{{14}} ;\\\,\frac{2}{5} = \frac{{14}}{{35}}; \frac{2}{7}=\frac{{10}}{{35}} \end{array}\)
Vì -7 < -6 < 0 nên \(\frac{{ - 7}}{{14}}<\frac{{ - 6}}{{14}}<0\)
Vì 0<10<14 nên \(0<\frac{{10}}{{35}}<\frac{{14}}{{35}}\)
Do đó: \(\frac{{ - 7}}{{14}} < \frac{{ - 6}}{{14}} < \frac{{10}}{{35}} < \frac{{14}}{{35}}\)
=> Sắp xếp các số theo thứ tự tăng dần: \(\frac{{ - 1}}{2};\,\frac{{ - 3}}{7};\,\frac{2}{7};\frac{2}{5}\)
b) Ta có: \(\frac{{ - 5}}{6} = - 0,8\left( 3 \right)\)
Mà \( - 0,75 > - 0,8\left( 3 \right) > - 1 > - 4,5\).
=>Sắp xếp các số theo thứ tự giảm dần: \( - 0,75;\frac{{ - 5}}{6}; - 1; - 4,5\)
a: \(-3< -2.15< -\sqrt{3}< 0< \dfrac{13}{7}< \sqrt{8}< \dfrac{33}{12}\)
b: \(0< \sqrt{3}< \dfrac{13}{7}< 2.15< \dfrac{33}{12}< \sqrt{8}< 3\)
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
a)-3<-2<-\(\sqrt[]{3}\)<0<\(\dfrac{13}{7}\)<\(\dfrac{33}{12}\)<\(\sqrt{8}\)<15
b)|0|<|-\(\sqrt{3}\)|\(\dfrac{13}{7}\)|<|-2|<|\(\dfrac{33}{12}\)|<\(\sqrt{8}\)<|-3|<15
Câu 1: Thực hiện phép tính :
a) \(2.\left(\dfrac{-2}{3}\right)^2-\dfrac{7}{2}=2.\dfrac{4}{9}-\dfrac{7}{2}\)
\(=\dfrac{8}{9}-\dfrac{7}{2}\)
\(=\dfrac{16}{18}-\dfrac{63}{18}=\dfrac{-47}{18}\)
\(b,5\dfrac{4}{13}.\dfrac{-3}{4}+3\dfrac{9}{13}.\left(-0,75\right)=\dfrac{69}{13}.\dfrac{-3}{4}+\dfrac{48}{13}.\dfrac{-3}{4}\)
\(=\left(\dfrac{69}{13}+\dfrac{48}{13}\right).\dfrac{-3}{4}\)
\(=\dfrac{117}{13}.\dfrac{-3}{4}\)
\(=9.\dfrac{-3}{4}=\dfrac{-27}{4}\)
\(c,\left(-1\right)^{2017}+\left|\dfrac{-1}{13}\right|+\sqrt{\dfrac{144}{169}}=-1+\dfrac{1}{13}+\dfrac{12}{13}\)
\(=-1+\dfrac{13}{13}\)
\(=-1+1=0\)
Câu 3: Tìm x, biết:
a)\(\dfrac{3}{5}-x=25\)
\(x=\dfrac{3}{5}-\dfrac{125}{5}\)
\(x=\dfrac{-122}{5}\)
b)\(\dfrac{2}{3}\left|x-1\right|+\dfrac{1}{4}=\dfrac{5}{3}\)
\(\dfrac{2}{3}\left|x-1\right|=\dfrac{20}{12}-\dfrac{3}{12}\)
\(\dfrac{2}{3}\left|x-1\right|=\dfrac{17}{12}\)
\(\left|x-1\right|=\dfrac{17}{12}:\dfrac{2}{3}\)
\(\left|x-1\right|=\dfrac{17}{12}.\dfrac{3}{2}\)
\(\left|x-1\right|=\dfrac{17}{8}\)
Ta có 2 TH: TH1:\(x-1=\dfrac{17}{8}\) TH2:\(x-1=\dfrac{-17}{8}\) \(x=\dfrac{17}{8}+1\) \(x=\dfrac{-17}{8}+1\) \(x=\dfrac{17}{8}+\dfrac{8}{8}=\dfrac{25}{8}\) \(x=\dfrac{-17}{8}+\dfrac{8}{8}=\dfrac{-9}{8}\) Vậy x∈\(\left\{\dfrac{25}{5};\dfrac{-9}{8}\right\}\)Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
Ta có:
\(-\frac{2}{3} = -0,\left( 6 \right);\,\,\,\,\,4,1;\,\,\, - \sqrt 2 = - 1,414...;\,\,\,\,3,2;\\\pi = 3,141...;\,\,\,\, - \frac{3}{4} = - 0,75;\,\,\,\,\frac{7}{3} = 2,\left( 3 \right)\).
Do \( - 1,414... < - 0,75 < -0,\left( 6 \right) < 2,\left( 3 \right) < 3,141... < 3,2 < 4,1\)
Nên \( - \sqrt 2 < - \frac{3}{4} < -\frac{2}{3} < \frac{7}{3} < \pi < 3,2 < 4,1.\)
\(-\sqrt{13}\approx-3,60< -3,21\)
\(\frac{1}{3}< 1< \sqrt{7}\approx2,64< 4\frac{5}{7}\)
Vậy thứ tự sắp xếp giảm dần là:
\(4\frac{5}{7};\sqrt{7};1;\frac{1}{3};0;-3,21;-\sqrt{13}\)