Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)MTC:\(12x^5y^4\)
\(\dfrac{5}{x^5y^3}=\dfrac{5\cdot12y}{x^5y^3\cdot12y}=\dfrac{60y}{12x^5y^4}\)
\(\dfrac{7}{12x^3y^4}=\dfrac{7\cdot x^2}{12x^3y^4\cdot x^2}=\dfrac{7x^2}{12x^5y^4}\)
b)MTC:\(60x^4y^5\)
\(\dfrac{4}{15x^3y^5}=\dfrac{4\cdot4x}{15x^3y^5\cdot4x}=\dfrac{16x}{60x^4y^5}\)
\(\dfrac{11}{12x^4y^2}=\dfrac{11\cdot5y^3}{12x^4y^2\cdot5y^3}=\dfrac{55y^3}{60x^4y^5}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
a) MTC: \(12x^3y^3\)
\(\dfrac{3}{4x^3y^2}=\dfrac{3\cdot3y}{4x^3y^2\cdot3y}=\dfrac{9y}{12x^3y^3}\)
\(\dfrac{2}{3xy^3}=\dfrac{2\cdot4x^2}{3xy^3\cdot4x^2}=\dfrac{8x^2}{12x^3y^3}\)
b) MTC: \(x\left(x-3\right)^2\)
\(\dfrac{5}{x^2-6x+9}=\dfrac{5}{\left(x-3\right)^2}=\dfrac{5x}{x\left(x-3\right)^2}\)
\(\dfrac{3}{x^2-3x}=\dfrac{3}{x\left(x-3\right)}=\dfrac{3\left(x-3\right)}{x\left(x-3\right)^2}=\dfrac{3x-9}{x\left(x-3\right)^2}\)
a) Tìm MTC:
2x + 6 = 2(x + 3)
x2 – 9 = (x – 3)(x + 3)
MTC = 2(x – 3)(x + 3) = 2(x2 – 9)
Nhân tử phụ:
2(x – 3)(x + 3) : 2(x + 3) = x – 3
2(x – 3)(x + 3) : (x2 – 9) = 2
Qui đồng:
b) Tìm MTC:
x2 – 8x + 16 = (x – 4)2
3x2 – 12x = 3x(x – 4)
MTC = 3x(x – 4)2
Nhân tử phụ:
3x(x – 4)2 : (x – 4)2 = 3x
3x(x – 4)2 : 3x(x – 4) = x – 4
Qui đồng:
click mh nhaa) Chọn MTC là: \(\left( {x - 3y} \right)\left( {x + 3y} \right)\)
Nhân tử phụ của các mẫu thức \(\dfrac{2}{{x - 3y}}\) và \(\dfrac{3}{{x + 3y}}\) lần lượt là: \(\left( {x + 3y} \right);\left( {x - 3y} \right)\)
Vậy:
\(\dfrac{2}{{x - 3y}} = \dfrac{{2\left( {x + 3y} \right)}}{{\left( {x - 3y} \right)\left( {x + 3y} \right)}}\)
\(\dfrac{3}{{x + 3y}} = \dfrac{{3.\left( {x - 3y} \right)}}{{\left( {x + 3y} \right)\left( {x - 3y} \right)}}\)
b) Ta có: \(\begin{array}{l}4{\rm{x}} + 24 = 4\left( {x + 6} \right)\\{x^2} - 36 = \left( {x - 6} \right)\left( {x + 6} \right)\end{array}\)
Chọn MTC là: \(4\left( {x + 6} \right)\left( {x - 6} \right)\)
Nhân tử phụ của các phân thức \(\dfrac{7}{{4{\rm{x}} + 24}}\) và \(\dfrac{{13}}{{{x^2} - 36}}\) lần lượt là \(\left( {x - 6} \right);4\)
Vậy:
\(\dfrac{7}{{4{\rm{x}} + 24}} = \dfrac{7}{{4\left( {x + 6} \right)}} = \dfrac{{7\left( {x - 6} \right)}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}}\)
\(\dfrac{{13}}{{{x^2} - 36}} = \dfrac{{13}}{{\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{13.4}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{52}}{{4\left( {x + 6} \right)\left( {x - 6} \right)}}\)
\(\dfrac{-5}{6x^5y^3}=\dfrac{-5\cdot2\cdot y^3}{12x^5y^6}=\dfrac{-10y^3}{12x^5y^6}\)
\(\dfrac{3}{4x^2y^6}=\dfrac{3\cdot3x^3}{12x^5y^6}=\dfrac{9x^3}{12x^5y^6}\)
\(\dfrac{7}{3x^4y^5}=\dfrac{7\cdot4\cdot x\cdot y}{12x^5y^6}=\dfrac{28xy}{12x^5y^6}\)
\(\dfrac{5}{x^5y^3};\dfrac{7}{12x^3y^4}\)
\(MTC=12x^5y^4\)
Ta có:
\(\dfrac{5}{x^5y^3}=\dfrac{60y}{12x^5y^4}\)
\(\dfrac{7}{12x^3y^4}=\dfrac{7x^2}{12x^5y^4}\)
bài này bị thiếu 1 bước tìm nhân tử phụ thì phải