Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
Ta có :
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)
\(A=3\)
P/s tham khảo nha
hok tốt
2x5 - 7x4 + 5x3 + 5x2 - 7x + 2 = 0
<=> 2x5-4x4-3x4+6x3-x3+2x2+3x2-6x-x+2=0
<=> 2x4(x-2)-3x3(x-2)-x2(x-2)+3x(x-2)-(x-2)=0
<=>(x-2)(2x4-3x3-x2+3x-1)=0
<=>(x-2)(2x4-x3-2x3+x2-2x2+x+2x-1)=0
<=>(x-2)[x3(2x-1)-x2(2x-1)-x(2x-1)+2x-1]=0
<=>(x-2)(2x-1)(x3-x2-x+1)=0
<=>(x-2)(2x-1)[x2(x-1)-(x-1)]=0
<=>(x-2)(2x-1)(x-1)(x2-1)=0
<=>(x-2)(2x-1)(x-1)2(x+1)=0
=> x-2=0 => x=2
hoặc 2x-1=0=>x=1/2
hoặc x-1=0=>x=1
hoặc x+1=0=>x=-1
Vậy...
\(2x^5-7x^4+5x^3+5x^2-7x+2=0\)
\(\Leftrightarrow\left(2x^5-4x^4+2x^3\right)-\left(3x^4-6x^3+3x^2\right)-\left(3x^3-6x^2+3x\right)+\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow2x^3\left(x^2-2x+1\right)-3x^2\left(x^2-2x+1\right)-3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(2x^3-3x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2x^3+2x^2-5x^2-5x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[2x^2\left(x+1\right)-5x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(2x^2-4x-x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
hoặc \(2x-1=0\)
\(\Leftrightarrow\)\(x=1\)
hoặc \(x=-1\)
hoặc \(x=2\)
hoặc \(x=\frac{1}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1;2;\frac{1}{2}\right\}\)
III.
a) \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow\)\(25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow\)\(10x=20\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
b) \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow\)\(9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)
\(\Leftrightarrow\)\(6x=-24\)
\(\Leftrightarrow\)\(x=-4\)
Vậy....
I=(2x-1)^2+(x-3)^2
=4x^2-4x+1+x^2-6x+9
=5x^2-10x+10
=5(x^2-2x+1)+5
=5(x-1)^2+5
Vì 5(x-1)^2>=0 với mọi x nên I= 5(x-1)^2+5>=5 với mọi x
Dấu bằng xảy ra khi:(x-1)^2=0
x-1=0
x=1
Vậy GTNN cua biểu thức T=5 khi x=1
c,M=(x-2)(x-5)(x^2-7x+10)
=(x^2-7x+10)^2
Vì M=(x^2-7x+10)^2>=0 với mọi x nên dấu bằng xảy ra khi:
x^2-7x+10=0
(x-2)(x-5)=0
Suy ra:x=2 hoặc x=5
Vậy GTNN của M là 0 tại x=2 hoặc x=5
d,T=(4x^2+ 8xy+4y^2)+(x^2 -2x+1)+(y^2+2y+1) -2
=4(x^2+2xy+y^2)+ (x-1)^2+ (y+1)^2 -2
=4(x+y)^2 +(x-1)^2 +(y+1)^2 -2
bạn tự lập luận 4(x+y)^2 +(x-1)^2 +(y+1)^2 -2 >=-2 với mọi x
Dấu = xảy ra khi:x=1,y=-1
Vậy GTNN của T là -2 tại x=1,y=-1
b,ý b dễ rồi mình cho bạn đáp án
GTNN cua N là 1 tại x=0
GTNN là giá trị nhỏ nhất.Chúc bạn học tốt
TL:
\(4x^2-y^2+4x+1\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1+y\right)\left(2x-1-y\right)\)
\(x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+x^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+x^2-1\right)\)
b)\(5x\left(x-2\right)-\left(2-x\right)\)
\(=5x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\left(5x+1\right)\)
Đề là gì vậy bạn ?
phân tích thành nhân tử