K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Gọi thương của phép chia \(P\left(x\right)\) cho \(x^3-x\)\(Q\left(x\right)\)

Vì đa thức chia có bậc 3 nên đa thức dư có bậc không quá 2.

Ta có: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}=Q\left(x\right).x\left(x-1\right)\left(x+1\right)+ax^2+bx+c\)Với \(x=1\) ta có: \(a+b+c=6\) (1)

Với \(x=-1\) ta có: \(a-b+c=-4\) (2)

Với \(x=0\) ta có: \(c=1\)

Thế \(c=1\) vào (1) và (2) ta có:

\(\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)

\(\Rightarrow R\left(x\right)=5x+1\)

NV
15 tháng 11 2018

Do \(x^3-x\) có bậc 3 => R(x) có bậc tối đa là bậc 2

\(\Rightarrow\)Đặt \(R\left(x\right)=ax^2+bx+c\) và gọi Q(x) là phần thương số, ta được:

\(x^{81}+x^{49}+x^{25}+x^9+x+1=\left(x^3-x\right)Q\left(x\right)+ax^2+bx+c\) (1)

Cho \(x=0\Rightarrow\) (1)\(\Leftrightarrow1=c\)

Cho \(x=1\) thì \(\left(1\right)\Leftrightarrow6=a+b+1\Rightarrow a+b=5\) (2)

Cho \(x=-1\) thì \(\left(1\right)\Leftrightarrow-4=a-b+1\Rightarrow a-b=-5\) (2)

Từ (2) và (3) có hệ \(\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)

Vậy phần dư là \(R\left(x\right)=5x+1\)

15 tháng 11 2018

c.ơn....

13 tháng 12 2015

1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)

                                             \(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2

2)  gọi dư của phép chia là ax+b

 ta có f(1) = a+b =51

         f(-1) = -a+b =1 

=> b =26 ; a =25

Vậy dư là : 25x + 26

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

23 tháng 6 2015

Đặt \(P\left(x\right)=x^{100}-x^{50}-2x^{25}-4=\left(x^2-1\right).G\left(x\right)+ax+b\)

Phần dư khi chia cho \(x^2-1\) là \(ax+b\)

Ta có: \(P\left(1\right)=1-1-2-4=\left(1^2-1\right)G\left(1\right)+a+b=a+b\)

\(\Rightarrow a+b=-6\) (1)

\(P\left(-1\right)=1-1+2-4=\left[\left(-1\right)^2-1\right].G\left(-1\right)-a+b=-a+b\)

\(\Rightarrow-a+b=-2\) (2)

Từ 1 và 2 suy ra \(a=-2\) ; \(b=-4\)

Vậy phần dư là \(-2x-4\)