Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của phép chia \(P\left(x\right)\) cho \(x^3-x\) là \(Q\left(x\right)\)
Vì đa thức chia có bậc 3 nên đa thức dư có bậc không quá 2.
Ta có: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}=Q\left(x\right).x\left(x-1\right)\left(x+1\right)+ax^2+bx+c\)Với \(x=1\) ta có: \(a+b+c=6\) (1)
Với \(x=-1\) ta có: \(a-b+c=-4\) (2)
Với \(x=0\) ta có: \(c=1\)
Thế \(c=1\) vào (1) và (2) ta có:
\(\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
\(\Rightarrow R\left(x\right)=5x+1\)
Đặt \(x^{243}+x^{81}+x^{27}+x^9+x^3+x=\left(x^2-1\right)k+r=\left(x-1\right)\left(x+1\right)k+r\)
Nên r là số dư ; Thay x = 1 ta được :
\(1^{243}+1^{81}+1^{27}+1^9+1^3+1=\left(1-1\right)\left(1+1\right)k+r\)
\(\Leftrightarrow6=0.2.k+r\Leftrightarrow r=6\)
Vậy số dư là 6
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
a2+b2=a3+b3=1
suy ra a = 1 hoặc b = 1
suy ra a4+b4cũng =1
bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé
Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)
Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0
Dư của phép chia đa thức P(x) cho ax + b là P(-ba)
Quy trình bấm phím như sau:
1. Ghi vào màn hình: 6A3 -7A2 -16A
Do \(x^3-x\) có bậc 3 => R(x) có bậc tối đa là bậc 2
\(\Rightarrow\)Đặt \(R\left(x\right)=ax^2+bx+c\) và gọi Q(x) là phần thương số, ta được:
\(x^{81}+x^{49}+x^{25}+x^9+x+1=\left(x^3-x\right)Q\left(x\right)+ax^2+bx+c\) (1)
Cho \(x=0\Rightarrow\) (1)\(\Leftrightarrow1=c\)
Cho \(x=1\) thì \(\left(1\right)\Leftrightarrow6=a+b+1\Rightarrow a+b=5\) (2)
Cho \(x=-1\) thì \(\left(1\right)\Leftrightarrow-4=a-b+1\Rightarrow a-b=-5\) (2)
Từ (2) và (3) có hệ \(\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
Vậy phần dư là \(R\left(x\right)=5x+1\)
c.ơn....