K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Dùng định lý của tia phân giác mới học sau bài dịnh lý Ta-lét đó lặp tỉ số ra thôi haha

15 tháng 2 2016

giải ra được ko bạn

 

30 tháng 5 2016

A B C D H

Áp dụng định lí Pytago, được : \(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

Đặt BD = x (cm)  (0x<5) => CD = 5-x (cm)

Theo tính chất tia phân giác, ta có : \(\frac{AB}{AC}=\frac{BD}{CD}\)hay \(\frac{x}{5-x}=\frac{3}{4}\Rightarrow4x=-3x+15\Rightarrow x=\frac{15}{7}\)

Lại có DH // AC => \(\frac{BD}{BC}=\frac{DH}{AC}\Rightarrow DH=\frac{BD.AC}{BC}=\frac{\frac{15}{7}.4}{5}=\frac{12}{7}\)(cm)

Vậy DH = 12/7 cm.

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

1: Xét tứ giác AMDN có

góc AMD=góc AND=góc MAN=90 độ

AD là phan giác

=>AMDN là hình vuông

2: BC=căn 3^2+4^2=5cm

AD là phân giác

=>DB/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

24 tháng 3 2024

loading...

 

27 tháng 12 2015

+) Ta có: AB vừa là đường cao vừa là đường trung tuyến

=> tam giác ADH cân tại A

=> AH = AD (1)

AC vừa là đường cao vừa là đường trung tuyến

=> tam giác AEH cân tại A

=> AH = AE (2)

Từ (1) và (2) => AH = AD = AE

+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)

AH.BC = AB.AC

=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)

+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm

Vậy DE = 4,8cm