Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H
Áp dụng định lí Pytago, được : \(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
Đặt BD = x (cm) (0x<5) => CD = 5-x (cm)
Theo tính chất tia phân giác, ta có : \(\frac{AB}{AC}=\frac{BD}{CD}\)hay \(\frac{x}{5-x}=\frac{3}{4}\Rightarrow4x=-3x+15\Rightarrow x=\frac{15}{7}\)
Lại có DH // AC => \(\frac{BD}{BC}=\frac{DH}{AC}\Rightarrow DH=\frac{BD.AC}{BC}=\frac{\frac{15}{7}.4}{5}=\frac{12}{7}\)(cm)
Vậy DH = 12/7 cm.
1: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
AD là phan giác
=>AMDN là hình vuông
2: BC=căn 3^2+4^2=5cm
AD là phân giác
=>DB/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
+) Ta có: AB vừa là đường cao vừa là đường trung tuyến
=> tam giác ADH cân tại A
=> AH = AD (1)
AC vừa là đường cao vừa là đường trung tuyến
=> tam giác AEH cân tại A
=> AH = AE (2)
Từ (1) và (2) => AH = AD = AE
+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
AH.BC = AB.AC
=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)
+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm
Vậy DE = 4,8cm
Dùng định lý của tia phân giác mới học sau bài dịnh lý Ta-lét đó lặp tỉ số ra thôi haha
giải ra được ko bạn