Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.
Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:
\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)
Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).
Vậy x = 4 (đvđd).
• Hình 4.10a)
Ta có: \(\dfrac{{EM}}{{EN}} = \dfrac{2}{3};\dfrac{{MF}}{{PF}} = \dfrac{3}{{4,5}} = \dfrac{2}{3}\) nên \(\dfrac{{EM}}{{EN}} = \dfrac{{MF}}{{PF}}\)
Vì \(\dfrac{{EM}}{{EN}} = \dfrac{{MF}}{{PF}}\), E ∈ MN, F ∈ MP nên theo định lí Thalès đảo ta suy ra EF // MN.
• Hình 4.10b)
* Ta có: \(\dfrac{{HF}}{{KF}} = \dfrac{{14}}{{12}} = \dfrac{7}{6};\dfrac{{HM}}{{MQ}} = \dfrac{{15}}{{10}} = \dfrac{3}{2}\)
Vì \(\dfrac{{HF}}{{KF}} \ne \dfrac{{HM}}{{MQ}}\) nên MF không song song với KQ.
* Ta có: \(\dfrac{{MQ}}{{MH}} = \dfrac{{10}}{{15}} = \dfrac{2}{3};\dfrac{{EQ}}{{EK}} = \dfrac{{12}}{{18}} = \dfrac{2}{3}\)
Vì \(\dfrac{{MQ}}{{MH}} = \dfrac{{EQ}}{{EK}}\); F ∈ HK; M ∈ HQ nên theo định lí Thalès đảo ta suy ra ME // HK.
Xét tam giác DBC, ta có:
O là trung điểm cạnh BD (tính chất hình chữ nhật)
OH // BC (cùng vuông góc với CD)
⇒ OH là đường trung bình tam giác BCD.
⇒ H là trung điểm của CD (đpcm).
• Hình 3.51a)
Tứ giác đã cho có hai đường chéo cắt nhau tại trung điểm của mỗi đường và chúng vuông góc với nhau nên tứ giác đó là hình thoi.
• Gọi tứ giác trong Hình 3.51b) là tứ giác ABCD.
Vì \(\widehat {{B_1}} = \widehat {{D_1}}\) mà hai góc này ở vị trí so le trong nên AB // CD.
Mà AB = CD nên tứ giác ABCD là hình bình hành.
Mặt khác, \(\widehat {{D_1}} = \widehat {{D_2}}\) hay DB là tia phân giác của \(\widehat {A{\rm{D}}C}\)
Khi đó, hình bình hành ABCD có DB là tia phân giác của \(\widehat {A{\rm{D}}C}\).
Do đó tứ giác ABCD là hình thoi.
• Tứ giác trong Hình 3.51c) hai đường chéo vuông góc với nhau và có đường chéo là đường vuông góc của một góc của tứ giác.
Từ đó ta suy ra tứ giác đã cho không phải là hình thoi.
Vậy Hình 3.51a và Hình 3.51b là hình thoi.
Ta có \(\widehat A = \widehat {{D_1}}\) mà hai góc này ở vị trí đồng vị nên AB // CD.
Suy ra tứ giác ABCD là hình thang.
Mặt khác hình thang ABCD có \(\widehat A = \widehat B\) nên ABCD là hình thang cân.
Do đó AD = BC (đpcm).
Do ABCD là hình chữ nhật nên \(\left\{{}\begin{matrix}AB=CD\\AD=BC\end{matrix}\right.\)
Mà M là trung điểm BC ⇒ \(\left\{{}\begin{matrix}MA=MD\\MB=MC\end{matrix}\right.\) (1)
Áp dụng định lí Py-ta-go trong tam giác ABM, MCD, AMD, ta có:
\(\left\{{}\begin{matrix}AB^2+MB^2=AM^2\\CD^2+MC^2=MD^2\\AM^2+MD^2=AD^2\end{matrix}\right.\) (2)
Từ (1) và (2), ta có:
\(2AB^2+2BM^2=AD^2=BC^2=4BM^2\)
\(\Rightarrow AB=BM=\dfrac{1}{2}BC\)
Mà \(2\cdot\left(AB+BC\right)=36\)
⇒ AB = 6 (cm) và BC = 12 (cm).
Để hình thang ABCD là hình thang cân thì \(\widehat A = \widehat B = {120^o};\widehat C = \widehat D = {80^o}\)
Suy ra \(\widehat A + \widehat B + \widehat C + \widehat D\)=120°+120°+80°+80°=400°>360°(không thỏa mãn định lí tổng bốn góc trong một tứ giác).
Khi đó, ABCD không phải là tứ giác.
Do đó ABCD cũng không phải là hình thang cân.
Do \(\widehat{A}+\widehat{D}=120^o+60^o=180^o\)
\(\Rightarrow AB//CD\)
\(\Rightarrow\) ABCD là hình thang.
* Xét Hình 3.55a)
Tứ giác ABCD có AB = CD; AD = BC.
Suy ra tứ giác ABCD là hình bình hành.
* Xét Hình 3.55b)
Tứ giác EFGH có hai đường chéo EG và FH cắt nhau tại trung điểm của mỗi đường.
Suy ra tứ giác EFGH là hình bình hành.
Hình bình hành EFGH có hai đường chéo vuông góc với nhau
Do đó tứ giác EFGH là hình thoi.
* Xét Hình 3.55c)
Ta có tam giác MNP có \(\widehat {NMP} = \widehat {NPM} = {45^0} \Rightarrow \widehat {MNP} = {180^0} - {45^0} - {45^0} = {90^0}\) (1)
\(\begin{array}{l}\widehat {NMP} = {45^0} + {45^0} = {90^0}(2)\\\widehat {NPQ} = {45^0} + {45^0} = {90^0}(3)\end{array}\)
Từ (1), (2) và (3) ta có MNPQ là hình chữ nhật (vì có 3 góc vuông).
Xét hình chữ nhật MNPQ có \(MP \bot NQ\) nên MNPQ là hình vuông (dựa theo dấu hiệu nhận biết hình vuông).
* Xét Hình 3.55d)
Tứ giác SRTU là hình cái diều (không phải hình thoi) vì các cạnh của tứ giác không bằng nhau.
Tứ giác ABCD trong Hình 3.41b là hình chữ nhật vì có \(\widehat A = \widehat B = \widehat C = \widehat D = {90^o}\)
Tứ giác ABCD trong Hình 3.41a và Hình 3.41c không phải là hình chữ nhật vì không có 4 góc vuông.