Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2M=1+1/2+1/2^2+...+1/2^9
M=2M-M= 1/2-1/2^10(triệt tiêu mấy cái giống nhau nha)
M=(2^9-1)/2^10
Nè :33
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\) Nhân với 2 cả hai vế:
được: \(2M=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\) Suy ra : \(M=2M-M=1-\frac{1}{2^{100}}\)
CHÚC BẠN HỌC GIỎI
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
đặt \(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{18}}-\frac{1}{3^{19}}\)
\(4A=1-\frac{1}{3^{20}}\)
\(A=\frac{1-\frac{1}{3^{20}}}{4}\)
\(M=1+\frac{1-\frac{1}{3^{20}}}{4}=\frac{5-\frac{1}{3^{20}}}{4}\)
Ta có : 1:M=1+3-3^2+3^3-3^4+....+3^19-3^20
1/M=(1+3^2+3^4+....3^20)-(3+3^3+..+3^19)
1/M=[(3^20-1)/8]-[(3^21-3)/8]
1/M=[3^20-3^21+(-2)]/8
Bạn tự làm tiếp nhé
\(1)\)\(\frac{3}{4}\cdot2+\frac{5}{2}\cdot\frac{1}{3}=\frac{3}{2}+\frac{5}{6}=\frac{9+5}{6}=\frac{14}{6}=\frac{7}{3}\)
\(2)\)\(\frac{5}{2}+\frac{3}{11}\cdot\frac{7}{26}\left(19-6\right)=\frac{5}{2}+\frac{3\cdot7}{11\cdot2}=\frac{5}{2}+\frac{21}{22}==\frac{38}{11}\)
\(2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2M-M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{10}}\)
\(=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)