Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2M-M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{10}}\)
\(=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)
2M=1+1/2+1/2^2+...+1/2^9
M=2M-M= 1/2-1/2^10(triệt tiêu mấy cái giống nhau nha)
M=(2^9-1)/2^10
Nè :33
\(A=8\frac{4}{17}-\left(2\frac{5}{9}+3\frac{4}{17}\right)\)
\(A=8\frac{4}{17}-2\frac{5}{9}-3\frac{4}{17}\)
\(A=\left(8\frac{4}{17}-3\frac{4}{17}\right)-\frac{23}{9}\)
\(A=5-\frac{23}{9}\)
\(A=\frac{45}{9}-\frac{23}{9}\)
\(A=\frac{22}{9}\)
\(A=8\frac{4}{7}-2\frac{5}{9}-3\frac{4}{7}\)
\(A=\left(8\frac{4}{7}-3\frac{4}{7}\right)-2\frac{5}{9}\)
\(A=5-2\frac{5}{9}\)
\(A=4+1-2\frac{5}{9}\)
\(A=4+1-\frac{23}{9}\)
\(A=4+\frac{-14}{9}\)
\(A=1\frac{5}{9}\)
\(B=-\frac{2}{17}+\frac{15}{23}+-\frac{15}{17}+\frac{4}{19}+\frac{8}{23}\)
\(B=\left(-\frac{2}{17}+-\frac{15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\)
\(B=\left(-1\right)+1+\frac{4}{19}\)
\(B=0+\frac{4}{9}=\frac{4}{9}\)
\(C=-\frac{1}{2}+\frac{3}{21}+-\frac{2}{6}+-\frac{5}{30}\)
\(C=-\frac{1}{2}+\frac{1}{7}+-\frac{1}{3}+-\frac{1}{6}\)
\(C=\left(-\frac{1}{2}+-\frac{1}{3}+-\frac{1}{6}\right)+\frac{1}{7}\)
\(C=\left(-1\right)+\frac{1}{7}\)
\(C=-\frac{6}{7}\)
Ủng hộ tk Đúng nhé ! ^^
B= -2 + 15 + (-15) + 4 + 8
17 23 17 19 23
B= [(-2) + (-15)] + [15 + 8] + 4
17 17 23 23 19
B= -1 +1+ 4 vậy B=4
19 19
Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)
\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)
\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)
\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)
\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)
\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)
\(4A=3-\frac{206}{3^{101}}< 3\)
=>\(4A< 3\)
\(\Rightarrow A< \frac{3}{4}\)
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\) Nhân với 2 cả hai vế:
được: \(2M=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\) Suy ra : \(M=2M-M=1-\frac{1}{2^{100}}\)
CHÚC BẠN HỌC GIỎI