K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=2x^2-6xy-3xy-6y-2x^2+6y+8xy\)

\(=-xy\)

\(=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{2}\)

b: x=16 nên x+1=17

\(N=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^3-x^3+x^3+x^2-x^2-x+20\)

=20-x

=20-16=4

17 tháng 6 2018

Giải:

a) \(M=2x\left(x-3y\right)-3y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(\Leftrightarrow M=2x^2-6xy-3xy-6y-2x^2+6y+8xy\)

\(\Leftrightarrow M=-xy\)

Tại \(x=\dfrac{-2}{3};y=\dfrac{3}{4}\), giá trị M là:

\(M=-\left(\dfrac{-2}{3}\right)\dfrac{3}{4}\)

\(\Leftrightarrow M=\dfrac{1}{2}\)

Vậy ...

c: Ta có: x=16

nên x+1=17

Ta có: \(C=x^4-17x^3+17x^2-17x+20\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

=20-x

=4

6 tháng 7 2018

a)\(15x^4-7x^4+\left(-20x^2\right)^2\) với x= -1

\(15x^4-7x^4+\left(-20x^2\right)^2\) = \(15x^4-7x^4-400x^4=-392x^4\)

Thay x= -1 vào biểu thức trên ta được: \(-392x^4=-392.\left(-1\right)^4=-392\)

Vậy giá trị của biểu thức trên với x= -1 là -392.

b) \(23x^2y^3+17x^3y^3+\left(-50x^2\right)y^3\) với x= 1; y= -1\(23x^2y^3+17x^3y^3+\left(-50x^2\right)y^3=23x^2y^3+17x^3y^3-50x^2y^3=17x^3y^3-27x^2y^3\)

Thay x=1 và y= -1 và biểu thức trên ta được:

\(17x^3y^3-27x^2y^3=10\)

Vậy giá trị của biểu thức trên với x=1 và y= -1 là 10

14 tháng 8 2018

\(A=x^4-17x^3+17x^2-17x+20\)

\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+4\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+4\)

\(=4\)

28 tháng 7 2016
X=16=>x+1=16+1=>x+1=17 A=x^4 - 17x^3 + 17x^2 -17x +20 A=x^4 -x^3(x+1) +x^2(x+1) -x(x+1)+(x+1)+3 A=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1+3 A=4 Mình biến đổi cái x=16 thành x+1 nha mình không biết trông khi đánh có sai đấu của phép tính thì bạn cứ đọc r sửa nha!
16 tháng 8 2017

gia tri bieu thuc la may tu lam di

a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)

b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)

c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)

\(=\dfrac{x^6+1}{x^2-3x+1}\)

d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)

21 tháng 8 2021

Tại x = 16 => x +1 = 17

Thay vào A ta được:

A = x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 20

A= x4 -(x4 + x3)  + (x3 + x2)  -(x2 + x) +20

A= x4 - x4 - x3 + x3 + x2 - x2 -x + 20

A= - x+20

Mà  x = 16

=> A= -16 + 20 = 4

Vậy A= 4 khi x =16