K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

d) x2(x−3)+27−9x=0

x2 (x - 3) + 27 - 9x = 0

x2 ( x - 3 ) +( 27 - 9x) = 0

x2 ( x - 3) + 9 ( 3 - x ) = 0

x2 ( x - 3) + 9 \(\left[-\left(x-3\right)\right]\) = 0

x2 ( x - 3) - 9 ( x - 3) = 0

(x - 3 )( x2 - 9) = 0

(x - 3) ( x-3) ( x + 3) = 0

(x - 3)2 ( x + 3) = 0

\(\Rightarrow\) x - 3 = 0 hoặc x+ 3 =0

+) x - 3 = 0 \(\Rightarrow\) x = 0+ 3=3

+) x+3= 0 \(\Rightarrow\) x = 0-3 = -3

Vậy: x= 3 hoặc x= -3

2 tháng 10 2018

\(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow\)\(x^2\left(x-3\right)+\left(x-3\right).9\)\(=0\)

\(\Rightarrow\)(\(x-3\))\(\left(x^2+9\right)=0\)

\(\Rightarrow\)x-3=0

\(\Rightarrow\)x=3

3 tháng 11 2017

a) \(\left(x+2\right)^2-\left(x+4\right)^2=0\)

\(\Rightarrow\left(x+2-x-4\right)\left(x+2+x+4\right)=0\)

\(\Rightarrow\left(-2\right)\left(2x+6\right)=0\)

\(\Rightarrow\left(-2\right).2.\left(x+3\right)=0\)

\(\Rightarrow x+3=0\) (vì \(-4\ne0\) )

\(\Rightarrow x=-3\)

Vậy \(x=-3\) (câu này mk có sửa đề ko biết có đúng ko hehe!!!)

b) \(\left(x-3\right)^2-9=0\Rightarrow\left(x-3\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=3^2\\\left(x-3\right)^2=\left(-3\right)^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)

Vậy \(x=6\) hoặc \(x=0\)

c) \(x^2+6x+9=0\Rightarrow\left(x+3\right)^2=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

Vậy \(x=-3\)

d) \(-x^3+9x^2-27x+27=0\)

\(\Rightarrow-\left(x^3-9x^2+27x-27\right)=0\)

\(\Rightarrow-\left(x-3\right)^3=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

Vậy \(x=3\)

25 tháng 6 2018

\(x^3+9x=0\)

<=> \(x\left(x^2+9\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

<=> \(x=0\)

\(9x^2-4-2\left(3x-2\right)^2=0\)

<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)

<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)

<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)

<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)

<=> \(3\left(3x-2\right)\left(2-x\right)=0\)

<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

\(\left(x^3-x^2\right)-4x+8x-4=0\)

<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)

<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x^2+4\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)

<=> \(x=1\)

\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)

<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)

<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)

<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)

<=> \(5x-2+3x-6=-4\)

<=> \(8x-8=-4\)

<=> \(8\left(x-1\right)=-4\)

<=> \(x-1=-\frac{1}{2}\)

<=> \(x=-\frac{3}{2}\)

20 tháng 9 2018

a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)

\(\Rightarrow x^3+3^3-x\left(x^2-4\right)=27\)

\(\Rightarrow x^3+27-x^3+4x=27\)

\(\Rightarrow27+4x=27\)

\(\Rightarrow4x=0\)

\(\Rightarrow x=0\)

20 tháng 9 2018

b) \(2x^2+7x+3=0\)

\(\Rightarrow2x^2+x+6x+3=0\)

\(\Rightarrow x\left(2x+1\right)+3\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-1\\x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

23 tháng 10 2016

a) \(4x^2-12x=-9\)

\(\Leftrightarrow4x^2-12x+9=0\)

\(\Leftrightarrow\left(2x-3\right)^2=0\)

\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)

b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)

c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)

d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)

13 tháng 10 2018

\(a.x^4-16x^2=0\Leftrightarrow\left(x^2+4x\right)\left(x^2-4x\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+4=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)

\(b.\left(x-5\right)^3-x+5=0\)

\(\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

13 tháng 10 2018

a) x4 - 16x2 = 0

<=> x2 ( x2 - 16 ) = 0

<=> \(\left[{}\begin{matrix}x^2=0\\x^2-16=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)

Vậy...

b) ( x - 5)3 - x + 5 = 0

<=> ( x - 5)3 - (x - 5) = 0

<=> (x - 5) [ (x - 5)2 - 1] =0

<=> \(\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

Vậy...

c) 5(x - 2) = x2 - 4

<=> 5(x - 2) - (x2 - 4) = 0

<=> (x - 2)( 5 - x - 2) = 0

<=> (x - 2)( 3 - x ) = 0

<=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy...

d) x - 3 = (3 - x)2

<=> x - 3 - (x - 3)2 = 0

<=> (x - 3)(1 - x + 3) = 0

<=> (x - 3)( 4 - x ) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Vậy...

e) x2 (x - 5) + 5 - x = 0

<=> x2 (x - 5) - (x - 5) = 0

<=> (x2 - 1)( x - 5) = 0

<=> \(\left[{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

,

24 tháng 10 2016

Phân tích thành nhân tử r tìm x nhé bạn. k đi mình làm

7 tháng 7 2017

a) \(3x^2-5x-12=0\)

\(\Leftrightarrow3x^2+4x-9x-12=0\)

\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)

b) \(7x^2-9x+2=0\)

\(\Leftrightarrow7x^2-7x-2x+2=0\)

\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).

\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)