K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi d=UCLN(2n+1;6n+5)

\(\Leftrightarrow6n+5-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+1 là số lẻ

nên n=1

=>ƯCLN(2n+1;6n+5)=1

=>ƯC(2n+1;6n+5)={1;-1}

b: Gọi d=ƯCLN(2n+1;3n+1)

\(\Leftrightarrow6n+3-6n-2⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(5n+3;2n+1)

\(\Leftrightarrow10n+6-10n-5⋮d\)

\(\Leftrightarrow1⋮d\)

=>ƯC(5n+3;2n+1)={1;-1}

11 tháng 11 2016

Gọi A là UC(2n+1,3n+1)

\(\rightarrow\)2n+1\(⋮\)A\(\Rightarrow\)3(2n+1)\(⋮\)A

\(\rightarrow\)3n+1\(⋮\)A\(\Rightarrow\)2(3n+1)\(⋮\)A

Từ đó suy ra:

3(2n+1)-2(3n+1)\(⋮\)A

6n+3-6n-2\(⋮\)A

1\(⋮\)A

\(\Rightarrow\)A=1

Vậy UC(2n+1,3n+1)=1

17 tháng 6 2018

Gọi a là ước chung 2n + 1 và 3n +1 , a ∈ N

Theo bài ra ta có :

2n + 1 ⋮ a ; 3n + 1 ⋮ a

⇒ 3 ( 2n + 1 ) ⋮ a ; 2 ( 3n + 1 )

⇒ 6n + 3 ⋮ a ; 6n + 2 ⋮ a

⇒ ( 6n + 3 ) - ( 6n + 2 ) ⋮ a

⇒ 1 ⋮ a

⇒ a ∈ Ư ( 1 ) = { 1 ; -1 }

Vì a ∈ N nên a = 1

Vậy ước chung của 2n + 1 và 3n + 1 là 1

22 tháng 8 2016

a/ Gọi p là USCLN của 3n+13 và 3n+13 => 3n+13 và 3n+14 chia hết cho p

=> 3n+14-(3n+13)=1 cũng chia hết cho p => p=1 => 3n+13 và 3n+14 là số nguyên tố cùng nhau vì có USCLN=1

b/ Gọi p là USCLN của n+2 và 2n+3 => n+2 và 2n+3 chia hết cho p

n+2 chia hết cho p => 2n+4 cũng chia hết cho p => (2n+4)-(2n+3)=1 cũng chia hết cho p => p=1

=> n+2 và 2n+3 là số nguyên tố cùng nhau vì có USCLN=1

Các bài khác làm tương tự

2 tháng 3 2022

ai kb ko kết đi chờ chi

1 tháng 11 2024

2024 r

Nên mình ko giải 

 

25 tháng 10 2017

Goi UC(2n+1;3n+1)=d 
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d 
hay 6n+3 chia het cho d(1) 
+/3n+1 chia het cho d=>2(3n+1) chia het cho d 
hay 6n+2 chia het cho d(2) 
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d 
=>1 chia het cho d 
=>d la uoc cua 1 
=>d thuoc tap hop 1;-1 
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1

3 tháng 4 2016

(4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)

<=> 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3

=>2n-1\(\in\){1,-1,3,-3}

=>n\(\in\){0,1,2} (vì n là số tự nhiên)

3 tháng 4 2016

 n = 1;2;0

4 tháng 12 2019

Gọi d là ucln của 4n+7 và 2n+4

Ta có 4n+7 chia hết cho d

         2n+4 chia hết cho d

=> 4n+7 chia hết cho d

      2(2n+4) chia hết cho d

=> 4n+7 chia hết cho d

      4n+8 chia hết cho d

=> (4n+8)-(4n+7) chia hết cho d

=> 1 chia hết cho d

=> d thược u(1)

=> d=1

Vậy ucln của 4n+7 và 2n+4 là 1

4 tháng 12 2019

Gọi \(d\inƯC\left(4n+7,2n+4\right)\)  vs \(d\inℕ^∗\)

\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)