Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=UCLN(2n+1;6n+5)
\(\Leftrightarrow6n+5-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên n=1
=>ƯCLN(2n+1;6n+5)=1
=>ƯC(2n+1;6n+5)={1;-1}
b: Gọi d=ƯCLN(2n+1;3n+1)
\(\Leftrightarrow6n+3-6n-2⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(5n+3;2n+1)
\(\Leftrightarrow10n+6-10n-5⋮d\)
\(\Leftrightarrow1⋮d\)
=>ƯC(5n+3;2n+1)={1;-1}
Gọi A là UC(2n+1,3n+1)
\(\rightarrow\)2n+1\(⋮\)A\(\Rightarrow\)3(2n+1)\(⋮\)A
\(\rightarrow\)3n+1\(⋮\)A\(\Rightarrow\)2(3n+1)\(⋮\)A
Từ đó suy ra:
3(2n+1)-2(3n+1)\(⋮\)A
6n+3-6n-2\(⋮\)A
1\(⋮\)A
\(\Rightarrow\)A=1
Vậy UC(2n+1,3n+1)=1
Gọi a là ước chung 2n + 1 và 3n +1 , a ∈ N
Theo bài ra ta có :
2n + 1 ⋮ a ; 3n + 1 ⋮ a
⇒ 3 ( 2n + 1 ) ⋮ a ; 2 ( 3n + 1 )
⇒ 6n + 3 ⋮ a ; 6n + 2 ⋮ a
⇒ ( 6n + 3 ) - ( 6n + 2 ) ⋮ a
⇒ 1 ⋮ a
⇒ a ∈ Ư ( 1 ) = { 1 ; -1 }
Vì a ∈ N nên a = 1
Vậy ước chung của 2n + 1 và 3n + 1 là 1
a/ Gọi p là USCLN của 3n+13 và 3n+13 => 3n+13 và 3n+14 chia hết cho p
=> 3n+14-(3n+13)=1 cũng chia hết cho p => p=1 => 3n+13 và 3n+14 là số nguyên tố cùng nhau vì có USCLN=1
b/ Gọi p là USCLN của n+2 và 2n+3 => n+2 và 2n+3 chia hết cho p
n+2 chia hết cho p => 2n+4 cũng chia hết cho p => (2n+4)-(2n+3)=1 cũng chia hết cho p => p=1
=> n+2 và 2n+3 là số nguyên tố cùng nhau vì có USCLN=1
Các bài khác làm tương tự
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
hay 6n+3 chia het cho d(1)
+/3n+1 chia het cho d=>2(3n+1) chia het cho d
hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
các bạn giúp mik vs nha mik đang gấp
tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
mik cảm ơn nhiều
(4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
<=> 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
=>2n-1\(\in\){1,-1,3,-3}
=>n\(\in\){0,1,2} (vì n là số tự nhiên)
Gọi d là ucln của 4n+7 và 2n+4
Ta có 4n+7 chia hết cho d
2n+4 chia hết cho d
=> 4n+7 chia hết cho d
2(2n+4) chia hết cho d
=> 4n+7 chia hết cho d
4n+8 chia hết cho d
=> (4n+8)-(4n+7) chia hết cho d
=> 1 chia hết cho d
=> d thược u(1)
=> d=1
Vậy ucln của 4n+7 và 2n+4 là 1
Gọi \(d\inƯC\left(4n+7,2n+4\right)\) vs \(d\inℕ^∗\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)