K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

a/ Gọi p là USCLN của 3n+13 và 3n+13 => 3n+13 và 3n+14 chia hết cho p

=> 3n+14-(3n+13)=1 cũng chia hết cho p => p=1 => 3n+13 và 3n+14 là số nguyên tố cùng nhau vì có USCLN=1

b/ Gọi p là USCLN của n+2 và 2n+3 => n+2 và 2n+3 chia hết cho p

n+2 chia hết cho p => 2n+4 cũng chia hết cho p => (2n+4)-(2n+3)=1 cũng chia hết cho p => p=1

=> n+2 và 2n+3 là số nguyên tố cùng nhau vì có USCLN=1

Các bài khác làm tương tự

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Bài 1:

Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 1; 3n + 1)

⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d                        ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d                        ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d

⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

Bài 2:

Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 4n + 12)

⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d                        ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d                        ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d

⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d

⇒⇒2 ⋮⋮d

Mà: 2n + 5 là số lẻ nên d = 1

Do đó: ƯCLN(2n + 5; 4n + 12) = 1

Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.

Bài 3:

Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(12n + 1; 30n + 2)

⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d                        ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d                        ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d

⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(12n + 1; 30n + 2) = 1

Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.

Bài 4:

Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)

⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d                        ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d                        ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d

⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 5; 3n + 7) = 1

Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.

Bài 5:

Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)

⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d                        ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d                        ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d

⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(5n + 7; 3n + 4) = 1

Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.

Bài 6:

Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)

⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d                        ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d                        ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d

⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(7n + 10; 5n + 7) = 1

Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.

6 tháng 12 2019

THANKS BẠN NHA !

21 tháng 8 2015

đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5

ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d

=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d

=> ( 6n + 5) - 3( 2n + 1) : hết cho d

=> 2 : hết cho d

=> d = 2

mà 2n + 1 ko : hết cho d

=> d = 1( dpcm)

21 tháng 8 2015

a) Goi d la UCLN ( n ; n+1 )                       b) Goi d la UCLN ( 3n+2 ;5n+3)

n+1 chia het cho d                                             3n+2 chia het cho d-->5(3n+2) chia het cho d

n chia het cho d                                                 5n+3 chia het cho d-->3(5n+3) chia het cho d

-> n+1-n chia het cho d                                 ->5(3n+2)-3(5n+3) chia het cho d

-> 1 chia het cho d                                        -> 15n+10-15n-9 chia het cho d

Va n va n+1 la hai so ngto cung nhau            - -> 1 chia het cho d

                                                                      Vay 3n+2 va 5n+3 chia het cho d

c) Goi d la UCLN (2n+1;2n+3)                                 d) Goi d la UCLN (2n+1;6n+5)

2n+1 chia het cho d                                                2n+1 chia het cho d-->3(2n+1) chiA het cho d

2n+3 chia het cho d--> 2n+1+2 chia het cho d          6n+5 chia het cho d

->2 chia het cho d                                               ->6n+5-3(2n+1) chia het cho d

--> d \(\in\)U (2)-> d\(\in\) {1;2}                                     -> 6n+5-6n-3 chia het cho d

d=2 loai vi 2n+1 khong chia het cho 2-> d=1         ->2 chia het  cho d

Vay 2n+1 va 2n+3 la hai so ng to cung nhau         --> d \(\in\)U (2)-> d\(\in\) {1;2} 

                                                                           d=2 loai vi 5n+3 k chia het cho 2-->d=1

                                                                       vay 2n+1 va 6n+5 la2 so ng to cung nhAU

 

24 tháng 11 2015

gọi  UCLN﴾2n + 1 ; 6n + 5﴿ là d 

ta có :

2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d

6n + 5 chia hết cho d

=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d

=>2 chia hết cho d

=> d thuộc Ư﴾2﴿ = {1;2}

Mà 2n + 1 ; 6n + 5 lẻ nên n = 1

=>UCLN(..)=1

=>ntcn

27 tháng 10 2023

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

9 tháng 11 2017

Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có: 
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d thuộc ( 1; -1) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

9 tháng 11 2017

 Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N