\(y'\ge0\) voi mọi x thuoc R

a) \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2021

a/ \(y'=3mx^2-2\left(m+1\right)x+3m\)

Xet m=0 ko thoa man

Xet m khac 0

\(y'\ge0\Leftrightarrow\left(m+1\right)^2-9m^2\le0\Leftrightarrow8m^2-2m-1\ge0\)

\(\Leftrightarrow m^2+8\le0\left(vl\right)\) => ko ton tai m thoa man

b/ \(y'=mx^2-2mx+2m-1\)

m=0 ko thoa man

Xet m khac 0

\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\left(2m-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\ge1\)

 

23 tháng 4 2021

Để anh Lâm giải quyết nốt nhé, toi phải chạy deadline đây :(

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R A. 3 B. 4 C. 6 D. 5 Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\) là A. 5 B. 4 C. 6 ...
Đọc tiếp

Câu 1 : Cho hàm số f (x) = \(-x^3+3mx^2-12x+3\) với m là tham số . Số giá trị nguyên của m \(\in\left[-1;5\right]\) để f' (x) \(\le0\) với mọi x \(\in\) R

A. 3 B. 4 C. 6 D. 5

Câu 2 : Cho hàm số f(x) = \(\frac{mx+10}{2x+m}\) với m là tham số thực . Số giá trị nguyên của m để f' (x) < 0 , \(\forall x\in\left(0;2\right)\)

A. 5 B. 4 C. 6 D. 3

Câu 3 : Cho hàm số \(y=\frac{2x}{x+1}\) có đồ thị (C) . Phương trình tiếp tuyến của (C) song song với đường thẳng \(\left(\Delta\right)\) : x - 2y + 1 = 0 là

A. y = x + 9 B. y = \(\frac{1}{2}x+\frac{9}{2}\) C. y = x - 9 D. y = \(\frac{1}{2}x-\frac{9}{2}\)

Câu 4 : Biết lim \(\frac{\sqrt{2n^2+1}-3n}{n+2}=\sqrt{a}-b\) . Tính a + b

A. 5 B. -3 C. -1 D. 2

Câu 5 : Tìm lim \(\frac{2x^2-\left(a+1\right)x-a^2+a}{x^2-a^2}\left(x\rightarrow a\right)\) theo a

A. \(\frac{3a+1}{2a}\) B. \(\frac{a-1}{2a}\) C. \(\frac{3a-1}{2a}\) D. \(\frac{3a-1}{2}\)

giải chi tiết từng câu giúp mình với ạ

2
NV
1 tháng 7 2020

3.

\(x-2y+1=0\Leftrightarrow y=\frac{1}{2}x+\frac{1}{2}\)

\(y'=\frac{2}{\left(x+1\right)^2}\Rightarrow\frac{2}{\left(x+1\right)^2}=\frac{1}{2}\)

\(\Rightarrow\left(x+1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=\frac{1}{2}\left(x-1\right)+1\\y=\frac{1}{2}\left(x+3\right)+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}x+\frac{1}{2}\left(l\right)\\y=\frac{1}{2}x+\frac{9}{2}\end{matrix}\right.\)

4.

\(\lim\limits\frac{\sqrt{2n^2+1}-3n}{n+2}=\lim\limits\frac{\sqrt{2+\frac{1}{n^2}}-3}{1+\frac{2}{n}}=\sqrt{2}-3\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

5.

\(\lim\limits_{x\rightarrow a}\frac{2\left(x^2-a^2\right)+a\left(a+1\right)-\left(a+1\right)x}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+2a\right)-\left(a+1\right)\left(x-a\right)}{\left(x-a\right)\left(x+a\right)}\)

\(=\lim\limits_{x\rightarrow a}\frac{\left(x-a\right)\left(2x+a-1\right)}{\left(x-a\right)\left(x+a\right)}=\lim\limits_{x\rightarrow a}\frac{2x+a-1}{x+a}=\frac{3a-1}{2a}\)

NV
1 tháng 7 2020

1.

\(f'\left(x\right)=-3x^2+6mx-12=3\left(-x^2+2mx-4\right)=3g\left(x\right)\)

Để \(f'\left(x\right)\le0\) \(\forall x\in R\) \(\Leftrightarrow g\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2-4\le0\Rightarrow-2\le m\le2\)

\(\Rightarrow m=\left\{-1;0;1;2\right\}\)

2.

\(f'\left(x\right)=\frac{m^2-20}{\left(2x+m\right)^2}\)

Để \(f'\left(x\right)< 0;\forall x\in\left(0;2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-20< 0\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{20}< m< \sqrt{20}\\\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{1;2;3;4\right\}\)

9 tháng 4 2017

a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10).

b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1).

c) y' = = = .

d) y' = = = .

e) y' = 3. . = 3. = - ..

NV
15 tháng 5 2019

Câu 1:

Đặt \(f\left(x\right)=x^3+mx^2+\left(m-3\right)x-1\)

Ta có \(f\left(0\right)=-1\) ; \(f\left(-1\right)=1\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

Mặt khác \(\left\{{}\begin{matrix}f\left(0\right)=-1< 0\\\lim\limits_{x\rightarrow+\infty}=+\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(\left\{{}\begin{matrix}f\left(-1\right)=1>0\\\lim\limits_{x\rightarrow-\infty}=-\infty\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho có 3 nghiệm phân biệt với mọi m

Câu 2:

\(f'\left(x\right)=x^2+2\left(m-1\right)x+m+1\)

Để \(f'\left(x\right)\ge0\) \(\forall x\) \(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m+1\right)\le0\)

\(\Leftrightarrow m^2-3m\le0\Leftrightarrow0\le m\le3\)

NV
15 tháng 5 2019

Câu 3:

Nhận thấy \(x=0\) không phải nghiệm

\(\Leftrightarrow2x^3+3x^2-2=-mx\)

\(\Leftrightarrow\frac{2x^3+3x^2-2}{x}=-m\)

Đặt \(f\left(x\right)=\frac{2x^3+3x^2-2}{x}\Rightarrow f'\left(x\right)=\frac{\left(6x^2+6x\right)x-\left(2x^3+3x^2-2\right)}{x^2}=\frac{4x^3+3x^2+2}{x^2}\)

\(f'\left(x\right)=\frac{4x^2\left(x+1\right)+2-x^2}{x^2}\Rightarrow f'\left(x\right)>0\) \(\forall x\in\left(-1;1\right)\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left(-1;1\right)\)

\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=+\infty\) ; \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=-\infty\)

\(\Rightarrow y=-m\) luôn cắt đồ thị \(y=f\left(x\right)\) hay phương trình đã cho luôn có ít nhất 1 nghiệm trong khoảng \(\left(-1;1\right)\) với mọi m

NV
12 tháng 8 2020

3.

Hàm trùng phương \(f\left(x\right)=ax^4+bx^2+c\) với \(a\ne0\) đồng biến trên \(\left(0;+\infty\right)\) khi và chỉ khi:

\(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Leftrightarrow m\ge0\)

Hoặc giải bt: \(y'=4x^3+2mx\ge0\) ;\(\forall x>0\)

\(\Leftrightarrow2x\left(x^2+m\right)\ge0\)

\(\Leftrightarrow x^2+m\ge0\)

\(\Leftrightarrow x^2\ge-m\)

\(\Leftrightarrow-m\le min\left(x^2\right)=0\Rightarrow m\ge0\)

NV
12 tháng 8 2020

1.

Giả sử tiếp tuyến d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2>0\)

\(\Rightarrow cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|a-2b\right|}{\sqrt{\left(a^2+b^2\right)\left(1^2+\left(-2\right)^2\right)}}=\frac{\left|a-2b\right|}{\sqrt{5\left(a^2+b^2\right)}}\)

\(\Leftrightarrow4\left(a-2b\right)^2=15\left(a^2+b^2\right)\)

\(\Leftrightarrow11a^2+16ab-b^2=0\)

Nghiệm xấu quá nhìn muốn nản, bạn tự làm tiếp :)

2.

\(y'=cosx-2sinx+2m-5\)

Hàm số đồng biến trên TXĐ khi và chỉ khi \(y'\ge0\) ; \(\forall x\)

\(\Leftrightarrow cosx-2sinx+2m-5\ge0\) ;\(\forall x\)

\(\Leftrightarrow2m-5\ge2sinx-cosx\)

\(\Leftrightarrow2m-5\ge f\left(x\right)_{max}\) với \(f\left(x\right)=2sinx-cosx\)

Ta có: \(f\left(x\right)=2sinx-cosx=\sqrt{5}\left(\frac{2}{\sqrt{5}}sinx-\frac{1}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\)

Với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2}{\sqrt{5}}\)

\(\Rightarrow f\left(x\right)\le\sqrt{5}\Rightarrow2m-5\ge\sqrt{5}\Rightarrow m\ge\frac{5+\sqrt{5}}{2}\)

9 tháng 4 2017

a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.

Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó

y' = -16x3 +108x2 -162x -2.

b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.

c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .

d) y' = 2tanx.(tanx)' - (x2)' = .

e) y' = sin = sin.