Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
Ta có :
\(x^4+2^{4n+2}=x^4+x^2.2^{2n+2}+2^{4n+2}-x^2.2^{2n+2}=\left(x^2+2^{2n+1}\right)-\left(x.2^{n+1}\right)^2\)
\(=\left(x^2+2^{2n+1}-x.2^{n+1}\right)\left(x^2+2^{2n+1}+x.2^{n+1}\right)\)
Do x;n là số tự nhiên \(\Rightarrow x^2+2^{2n+1}+x.2^{n+1}>1\)
Vậy để \(x^4+2^{4n+2}\) là số nguyên tố \(\Leftrightarrow x^2+2^{2n+1}-x.2^{n+1}=1\)
\(\Leftrightarrow\left(x^2-2.x.2^n+2^{2n}\right)+2^{2n}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\)
\(\Rightarrow\orbr{\begin{cases}x-2^n=0\\2^{2n}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\n=0\end{cases}}}\)
Thử lại ta có : \(x^4+2^{4n+2}=1^4+2^{4.0+2}=1+4=5\) là số nguyên tố (TM)
Vậy \(x=1;n=0\) thì \(x^4+2^{4n+2}\) là số nguyên tố
a) Tìm số tự nhiên x để A=x14+x13+1 là số nguyên tố
b) Chứng minh x4-10x2+27 không là số chính phương
a)
Xét x=0 => A = 1 không là số nguyên tố
Xét x=1 => A= 3 là số nguyên tố (chọn)
Xét x>1
Có A = x14+ x13 + 1 = x14 - x2 + x13 - x + x2 + x + 1
A = x2(x12-1) + x(x12-1) + x2+x+1
A = (x2+x)(x3*4-1) + x2 + x + 1
Có x3*4 chia hết cho x3
=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)
=> x3*4-1 chia hết cho x2+x+1
=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)
=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)
Xét \(x=0\)
\(\Rightarrow M=1\)không phải số nguyên tố.
Xét \(x>0\) thì ta có:
\(M=x^{1999}+x^{1997}+1=\left(x^{1999}-x\right)+\left(x^{1997}-x^2\right)+x^2+x+1\)
\(=x\left(\left(x^3\right)^{666}-1\right)+\left(\left(x^3\right)^{665}-1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)A+\left(x^2+x+1\right)B+x^2+x+1\)
\(=\left(x^2+x+1\right)C\)
Vì M là số nguyên tố nên nó có 2 ước là 1 và chính nó. Ta lại thấy \(x^2+x+1>1\)
\(\Rightarrow x^{1999}+x^{1997}+1=x^2+x+1\)
\(\Leftrightarrow\left(x^{1999}-x^2\right)+\left(x^{1997}-x\right)=0\)
Ta có: \(\hept{\begin{cases}x^{1999}-x^2\ge0\\x^{1997}-x\ge0\end{cases}}\)
Dấu = xảy ra khi \(x=1\)
Ta có : M=x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)
Do đó , để M là số nguyên tố ⇔M=x2+x+1⇔M=x2+x+1
⇔x=1