K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu b tại đây nhé.

27 tháng 12 2017

bạn tham khảo ý b nhe

11 tháng 2 2019

1.a) A là số tự nhiên khi và chỉ khi 4x\(⋮\)x-2 =>x-2 là ước của 4 và x-2 \(\ge\)1=>x={3;4;6}

b) |A| > A khi và chỉ khi A âm=> x<2

2.b2c+2014 hay b2c+2017 bạn

Lê hồ trọng tín +2017 nha bạn, bấm lộn hhihihi

27 tháng 11 2019

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:

(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

4 tháng 6 2020

ai làm giúp em phép tính này với em làm mãi ko dc ạ 

bài 5 tính nhanh

a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2 

b 100 -5 -5 -...-5 ( có 20 chữ số 5 )

c 99- 9 -9 - ... -9 ( có 11 chữ số 9 ) 

d 2011 + 2011 + 2011 + 2011 -2008 x 4

i 14968+ 9035-968-35

k 72 x 55 + 216 x 15 

l 2010 x 125 + 1010 / 126 x 2010 -1010

e 1946 x 131 + 1000 / 132 x 1946 -946

g 45 x 16 -17 / 45 x 15 + 28 

h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1

28 tháng 12 2017

ta có: ab+bc+ca= 2017.abc

=> \(\dfrac{ab+bc+ca}{abc}=2017\)

=> \(\dfrac{b.\left(a+c\right)+ca}{abc}=2017\)

=> \(\dfrac{\left(a+c\right)+ca}{ac}=2017\)

=> a+c= 2017

Làm được tới đó thôi, ai giúp thì làm tiếp................

9 tháng 1 2017

Năm sau em học lớp 8 em làm giùm cko

9 tháng 1 2017

ko biết làm

12 tháng 12 2017

Thay ab+bc+ca=2017 vào ta được:

\(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)

\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)

\(=\left[a\left(a+b\right)+c\left(b+a\right)\right]\left[b\left(b+a\right)+c\left(b+a\right)\right]\left[c\left(c+b\right)+a\left(b+c\right)\right]\)\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

= \(\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)

Vậy \(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)là bình phương của số hữu tỉ.

NV
29 tháng 5 2020

- Nếu một trong các số a;b;c bằng 0, giả sử là a

\(\Rightarrow bc=0\Rightarrow\left\{{}\begin{matrix}b=0\\c=\frac{1}{2017}\end{matrix}\right.\)

\(\Rightarrow A=\frac{1}{2017^{2017}}\)

- Nếu a;b;c đều khác 0

\(ab+bc+ca=2017abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\\\frac{1}{a+b+c}=2017\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left[{}\begin{matrix}a=-b;c=\frac{1}{2017}\\b=-c;a=\frac{1}{2017}\\c=-a;b=\frac{1}{2017}\end{matrix}\right.\)

\(\Rightarrow A=\frac{1}{2017^{2017}}\)

Như vậy trong mọi trường hợp ta luôn có \(A=\frac{1}{2017^{2017}}\)